
22 Vestnik SibSUTI.  2012.  № 4  

 

УДК 004.42 

 

 

Self-configurable time source initialization 

for obtaining high-precision user-space timing 

 

 

I. Fedotova, E. Siemens  
 

 
In this paper, the algorithms and identification logics of a high performance user-space time 

source are described along with an experimental comparison of the accuracy and CPU costs of 

the available time sources under the Linux OS. This mechanism is presented within the unified 

user-space library HighPerTimer which allows identification of the most appropriate and accu-

rate time source on PC-platforms as well as on ARM-architectures and obtaining a high-

accurate down to nanosecond precision of time acquisition. This solution substitutes the accus-

tomed way of getting time value through Linux system calls and provides much faster way for 

time acquisition. 

 

Key words:  timestamp precision, hardware timestamping, timekeeping, HPET, TSC, high-

performance computing. 

 

 

 

1.  Introduction 
 

Efficient and precise tracking and measurement of time intervals is a key feature of implementa-

tion of state machines and communication protocols in modern computers and embedded systems 

[1, 2]. Furthermore, time measurements in high-speed performance networks and the correct per-

formance of proper algorithm implementation in telecommunication protocols require and depend 

on high performance and accurate timestamping. Regarding this point, the way of time acquisition 

through standard C library interface doesn’t provide appropriate reliability, because system calls are 

invoked and some extra time is spent, which on some architecture can be up to several microsec-

onds [3, 4]. However, interaction with time hardware directly can help to avoid wrapping system 

calls and therefore increase precision of timekeeping.  

Though our investigations have been performed under the Linux OS, most of the issues are 

common to other wide-spread operating systems like Linux, BSD-derivates and MacOS. Firstly, de-

pending on the hardware-environment and boot parameterization, the Linux kernel can use different 

hardware time sources. The most advanced are the Time Stamp Counter (TSC) [5, 6] and the High 

Precision Event Timer (HPET) [7, 8]. Their main characteristics such as reliability, stability and 

clock resolution heavily depend on the processor architecture. So the TSC can have non-monotonic 

characteristics, means that in some circumstances it can even decrement ticks, or it may overflow 

and wrap back to zero. At this point the high priority task is to identify the most suitable and reliable 

time source for the appropriate time interval measurements. Moreover, there are some cases [9, 10] 

in which it is not enough to have the accuracy of a timer up to microseconds. If it is meant the real 

high-accuracy performance, there must be a capability to handle nanoseconds and an ability to make 

appropriate operations with them with very low CPU costs of the calculations with these timers. 

In this paper, a novel approach solving the initialization problems of high-efficient and precise 

timer is elaborated. The primary goal is the instantiation of time handling classes, which allow 

combining well-known timer sources to a single unified class interface, which automatically takes 



Self-configurable Time Source Initialization for Obtaining High-precision User-space Timing 

 

23 

upon itself the choice of most suitable source (TSC, HPET or another one) like Linux kernel does it 

at boot time. This work then seeks to identify the most reliable hardware and provides to the user 

fast access to it through the HighPerTimer library, performing accurate time interval measurement. 

In the context of this library, the most reliable time source is a source, which supplies the accurate 

time information and posses not only the fastest way for time acquisition, but the most secure and 

trustworthy on the particular processor. It means, that user should not investigate in advance which 

timer hardware is more suitable for his purposes, due to the fact that an assignment of the 

appropriate source to HighPerTimer source occurs at initialization stage in user space. Therefore, by 

targeting the nanosecond precision, this mechanism is focusing on the possibility of a universal, 

purely library-based solution for platforms running Linux OS. One more goal is also developing an 

advanced software design, making it using features of the new C++11 standard and achieving higher 

efficiency and code maintainability. 

 

 

 

2.  Time source definition 
 

In general, the Linux kernel usually explicitly interacts with the Time Stamp Counter (TSC) and 

the High Precision Event Timer (HPET). Since the clock is the fundamental unit of time as seen by 

the processor, the TSC posses the fastest and the lowest possible overhead way of getting CPU time 

and provides the highest-resolution timing information available for that processor. It is set to 0 

following a reset of the processor and since that the counter increments every clock cycle of 

a particular CPU. In modern SMP- and NUMA-systems each processor has its own TSC counter. 

The time value of TSC is derived from FSB buses cycles and during processor performance, TSC’ 

values can be out of alignment. Since the advent of multi-core CPUs, systems with multiple CPUs, 

and «hibernating» operating systems, the TSC cannot be relied on providing accurate results unless 

great care is taken to correct the possible flaws: rate of tick and whether all cores have identical 

values in their time-keeping registers. With the introduction of these features, it can no longer be 

ensured that the Time Stamp Counters of multiple CPUs on a single motherboard are synchronized. 

Thus programmers can only obtain reliable results by locking their code to a single CPU. Even then, 

the CPU speed may change due to power-saving measures taken by the OS or BIOS, or the system 

may be hibernated and later resumed (resetting the Time Stamp Counter). Several forms of power 

management technology vary the processor’s clock speed dynamically and thereby change the TSC 

rate with little or no notice [11, p. 4].  

In newer processors the TSC may support an enhancement, referred to as an Invariant TSC fea-

ture, which is not tightly bound to processor cores and their cycles and, according to Intel documen-

tation, has a constant rate [12, vol. 3B, 17-50]. For most cases, the presence of this flag is essential 

for accepting it as HighPerTimer source. However, not all processors families increment the Time-

Stamp Counter in similar way. There are also some specific processors, which support the use of the 

TSC as a preferable timer even if the processor core changes its frequency. So HighPerTimer library 

investigates a particular model and family of given processor to identify the way of TSC implemen-

tation. At this point, our approach is – to check the stability of TSC and in case of an instable TSC 

just to switch to another more reliable clock source. 

The High Precision Event Timer is a hardware timer used in personal computers, formerly re-

ferred to by Intel as a Multimedia Timer [8, p. 4]. The main motivation for its creation was the ne-

cessity to replace slow and older Programmable Interval Timer (PIT) [10] whose frequency 

(1.19 MHz) did not meet the current system and software requirements. The HPET circuit in mod-

ern PCs is integrated into the south bridge chip and consists of a 64-bit or 32-bit main counter regis-

ter counting at a frequency of at least 10 MHz and a set of timers that can be used by the operating 

system. The problem using this timer in user-space is that operating systems, designed before HPET 

has been introduced, can’t access it, so they work only on hardware that has other timer facilities. 

http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Personal_computers


 I. Fedotova, E. Siemens  24 

Moreover, if the HPET main counter register has frequency of 10 MHz in a 32-bit mode, an over-

flow arises every 7.16 minutes [4 p. 10]. However, 10 MHz is explicitly the minimum required fre-

quency of a HPET-compatible timer – there are well known chipsets with a HPET main counter 

frequency of 25 MHz, at which the register overflow in 32 bit mode within less than 3 minutes. 

Consequently, it is very dangerous it in 32-bit mode in the scope of HighPerTimer. So in this library 

the use of HPET timer with a 32-bit main counter is generally avoided. 

Furthermore, there is always one more alternative clock source available - to rely on the operat-

ing system choice, which means to use some operating system functions for obtaining the time val-

ue. For instance, clock_gettime() system call, which is assumed as  the OS timer in the context of 

HighPerTimer library. The issue and pitfall here is that, a system call is processed in kernel mode, 

which is accomplished by changing the processor execution mode to a more privileged one, and 

a privilege context switch does occur [14, 15]. Switching from one process to another requires up to 

2 microseconds for doing the administration - saving and loading registers and memory maps, up-

dating various tables and lists, etc. So this way of relying on the OS time source has the lowest pri-

ority and is used only when other options are not available. 

 

 

 

3.  HighPerTimer library structure 
 

The high priority HighPerTimer task is identifying the reliable time source among available on 

this processor and assigning of it to the high performance time source at the early stage of initializa-

tion. It should be emphasized that setting source for HighPerTimer occurs in user space, not in ker-

nel space. So in most cases user doesn’t need to know, with which timer hardware he works actual-

ly, he just need to rely on nanosecond precision timestamping through interacting with some kind of 

a unified timer software library (so called High Performance Timer – HighPerTimer). 

Thereby, the HighPerTimer library supports the most usable and preferable time counters: TSC, 

HPET and alternative timer of operating system – OS Timer. For each of them corresponding 

classes TSCTimer, HPETTimer and OSTimer have been declared. On the Figure 1 the class diagram 

is showing a brief structure of the relationship between classes within HighPerTimer library. 

TSCTimer, HPETTimer and OSTimer classes have only private members and methods and their 

implementation is completely hidden from user. Through an assembly code, embedded into C++ 

methods, they provide a direct access to the timer hardware, initialize timer source, retrieve their 

time value and are at only HighPerTimer class’s disposal. These classes have «friend» relationship 

with HighPerTimer class, which means that it places their private and protected methods and 

members at friend classes’ disposal. For safety and security reasons, we protect the hardware access 

from use by application users and permit it only from special classes. A limited read-only access to 

some specific information regarding CPU and time hardware features, which is obtaining in 

a protected interface, is provided by AccessTimeHardware class from HighPerTimer file. 

 The principal mechanism for adaptation main characteristics of a unified timer, as well as the 

whole routine of handling time values, which is assumed for user interaction, is declared within 

class HighPerTimer. HighPerTimer class keeps a set of constructors which set an appropriate time 

value in seconds, nanosecond, in tics or in timespec or timeval structures as defined by all 

Unixes [16]. It has capabilities to retrieve the current time value in the sequel to perform appropriate 

operations with this value or measure the performance of some operations: 

 
// declare HighPerTimer objects 

HighPerTimer timer1, timer2; 
HighPerTimer::Now (timer1); 

// measuring operation    

HighPerTimer::Now (timer2); 

 



Self-configurable Time Source Initialization for Obtaining High-precision User-space Timing 

 

25 

Further, timer object operations like comparison, arithmetical operations and assignments are 

also provided by the HighPerTimer, which provide a fast and effective way to handle time objects, 

since these operations are effectively deducted to respective operations on the signed 64-bit timer 

main counter which is counting the number of tics of the respective hardware clock frequency from 

the beginning of the Unix epoch., Seconds, microseconds and nanoseconds can be extracted from 

a timer object in a lazy initialization way, that means that calculation between the number of tics 

and seconds/nanoseconds is done only on demand, when these values are requested. However, se-

conds and nanoseconds are used rather rarely and mostly in a less time-critical part, so these re-

calculations don’t hurt the high-performance time calculations. Also accessors to timespec or 

timeval structs are provided for bridging between the Unix timing-ecosystem and the HighPer-

Timer objects.  

Inside the implementation of the default constructor of HPTimerInitAndClean class, the strict 

order of initialization process for HighPerTimer class is defined. It is accomplished by invocation of 

corresponding HighPerTimer initialization methods in a strict sequence. Thereby, a user interacts 

only with the high performance timer from HighPerTimer class and has an access through 

AccessTimeHardware class to some advanced hardware information, whereas interfaces of other 

classes are protected and hidden from him. 

 

 
 

Figure 1. Simplified class diagram of HighPerTimer library 

 

The HighPerTimer library is only partly thread-save. All generic operations on the timer object are 

by intention not-thread safe and it is assumed that interaction with HighPerTimer objects is 

performed from the one single thread. Otherwise, a user has to take care on protection of 

a competitive access by its own facilities. The rationale behind this is that thread-safety can’t come 

without performance penalties, however high-resolution and high-performance timer objects are 

often used at very low levels of program logics, in which concurrent thread access to a particular 

timer object can be excluded from the program logics. However, some special capabilities of 

HighPerTimer library such as sleeping methods and mechanisms for resuming sleeping thread by an 

Interrupt() method are thread-save, since Interrupt() is by definition designed to be called from 

a thread apart from the sleeping object thread.  

 

 



 I. Fedotova, E. Siemens  26 

4. Change of the Time Source for HighPerTimer 
 

The initializing routine of HighPerTimer implies an implementation of some central 

parameterization of the library, which has to be performed at the initialization time of the library. 

Primarily, it is the time source selection of the HighPerTimer, which is accomplished on the bases 

of the appropriate methods call from TimeHardware class. Especially, InitHPTimeSource() calls 

InitTSCTimer() and InitHPETTimer() methods, which attempt to initialize time hardware (see 

Fig. 1) Additionally, this concept also includes calculation of timer frequency, the value of shift 

against Unix Epoch, maximum and minimum values for HighPerTimer and determining HZ 

frequency of the kernel, where the value of HZ is defined as the system timer interrupt rate and 

varies across kernel versions and hardware platforms. These values are necessary for further 

operations with time values. In fact, these variables must be defined primarily, in a strict order 

before and have unchanged values globally across the entire library scope. In other words, they 

should be allocated statically. 

Nevertheless, sometimes there are some cases, when user would prefer some particular time 

source which doesn't coincide with already initialized timer source. For that it is provided a special 

ability to change default timer: 

 
HighPerTimer::SetTimerSource (const TimeSource UserSource);  

 

This feature should be used with caution only at system initialization time, and in any case before 

instantiation of the first HighPerTimer object.  This is important, because, as it was described 

above, a number of global parameters are directly dependent upon this source. So when a change of 

timer source occurs, recalculation of most parameters also occurs, leading to invalidation of all the 

already existing timer objects within the executed program. 

  
 

 

5.  Identification of unified high performance time source  
 

The TSCTimer and HPETTimer classes contain respective initialization routines and appropriate 

InitTSCTimer() and InitHPETTimer() methods, which return true for success and false for failure. 

Success is meant the verifiable time source is stable and it can be used for accurate counting, the 

failure means that it should not be relied on this time source. As it was mentioned above, the TSC is 

considered as a more preferred timer, so it is always checked first.  

For example, processor VIA Nano X2 has a constant TSC rate, its initialization routine returns 

true and, for this case, the check of HPET device is not necessary and does not occur. Though, 

HPET and OS Timer can also be used by HighPerTimer special capability to change source by the 

library user after automatic initialization is finished. In Figure 2, the behavior of all available time 

sources is shown in detail. The tests focus on measurements of the cost of setting timer and were 

performed in a loop consisting of 100 million steps. The costs of getting timer tics mean here the 

time setting timer and extracting its time value is required.  

The main features of given processor are: 

Processor (CPU): VIA Nano X2 U4025 @ 1.2 GHz 

CPU Frequency: 1067 MHz 

Cores: 2 

Constant TSC rate 

HPET Frequency: 14 MHz 

   Cache size: 1024 Kb 

However, during the experiments it was observed some rarely occurring peak values, which can 

obviously destroy mean and especially standard deviation values. This behavior can be traced with 



Self-configurable Time Source Initialization for Obtaining High-precision User-space Timing 

 

27 

all time sources, among all tested processors. They are noticeable from the Figure 2 and the Figure 3 

and presumably, can be caused by an interruption of the time measurement loop (like by Interrupt 

Service Routines of by the process scheduler of the kernel). According to (1), which is taken for 

calculation standard deviation value s, on the initial range, sum of x
2 

(sum of squares) and the mean 

value can be greatly increased under the influence of only one peak. 

 
2

2

1 1

1 1

1

n n

i i
i i

s x x
n n 

    
     

      

  . (1)        

So, in the course of given research, for calculating mean and standard deviation value (see Tab. 

1, Tab. 2) filtering of range is necessary, as these phenomena of peaks are out of scope of our inves-

tigations. The point here is that with unfiltered range it is obtained not inaccurate results, but mean-

ingless, since we are here interested in measurement of time distance between two consecutive time 

fetches only. So filtering out of peaks allows us to prevent calculation of the bias, caused by process 

interruptions and hence helps to obtain more physically meaningful results. 

 

Table 1. Mean and standard deviation values of HPET, TSC and OS Timer costs  

on the VIA Nano X2 processor 

 

Timer source  Mean, nsec  Standard deviation, nsec 

 TSC Timer  38.231  0.3134 

 HPET Timer 598.72  76.015 

 OS Timer 102.20  0.5253 

 

 
 

Figure 2. Measurements of TSC, HPET and OS Timer costs on the VIA Nano X2 processor 

 

If the TSC initialization function returns false, it means that the TSC is unstable and can’t be 

used as a time source. In that case there are two more options for the clock source – HPET or OS 

Timers. However, there is no guarantee which hardware timer is used by clock_gettime() call, issued 

by the OS Timer and, regarding to this point, it is necessary to check the mean value of getting ticks 

cost of both timers. If mean values are similar (the difference is no more than 25%), there is a sense 

to estimate timers by standard deviation values.  

The first point here is that though the TSC mean value can be lower than the HPET mean value, 

but Linux kernel, as well as our HighPerTimer library, indicates the TSC as a non-stable, unreliable 

timer and actually its frequency can change periodically. Regarding to the next point, the OS Timer 

is implemented through clock_gettime() function, which means that it always invokes a system call 



 I. Fedotova, E. Siemens  28 

to obtain time value from the time hardware. For the case, when the HPET is a current Linux time 

source, the OS Timer, in fact, interacts with the HPET, but spends some extra time because of 

wrapping system calls. Being more precise, according to the Table 2, this extra timer or, in other 

words, the difference of mean values of the HPET and OS Timer, is about 0.0541 usec and the 

similarity of their behaviors is noticeable from the Figure 3 against to the situation is described 

above (see  Fig. 2) when the OS Timer uses the TSC. However, to provide appropriate level of 

reliability, we also evaluate numbers by some threshold for deviation difference and in fact, can give 

a precedence to the OS Timer, which has higher mean value, but lower deviation, so is more 

reliable.  

As an example with unstable TSC source, a processor AMD Athlon X2 Dual Core can be 

examined. Its main features are: 

Processor (CPU):  AMD Athlon ™ X2 Dual Core Processor BE-2350 

CPU Frequency: 1000 MHz 

Cores: 2 

HPET Frequency: 25 MHz 

Cache size: 512 Kb 

Given processor has unstable TSC rate, so InitTSCTimer() returns false.  HPET device with 

frequency of 25 MHz is accessible.  According to Figure 3, OS Timer and, being more precisely, 

clock_gettime() based on the HPET timer. Their lines are very close to each other and have similar 

behavior. More precisely, mean values of this both timers differ by about 2% (Table 2). In this case 

it is necessary to compare standard deviation of their values, all the more so both lines are vary 

widely. Uniquely, this figure is established and explained the propriety of the additional deviation 

check. 

 

Table 2. Mean and standard deviation values of HPET, TSC and OS Timer 

 on the  AMD Athlon processor 

 

Timer source  Mean, usec  Standard deviation, usec 

 TSC Timer   0.0251  0.0015  

 HPET Timer  1.0633  0.2079 

 OS Timer  1.1174  0.3743 

 

 
 

Figure 3. Measurements of TSC, HPET and OS Timer on the AMD Athlon processor 

 

 



Self-configurable Time Source Initialization for Obtaining High-precision User-space Timing 

 

29 

6. Conclusion 
 

According to the requirements of advanced high speed data networks, the timestamp precision 

of network measurement applications must be increased against state-of-the-art methods. In this pa-

per, we have succeeded in finding a solution, which is autoconfiguring itself on many systems, and 

providing access to the most reliable timer, which are much faster than standard system calls. 

HighPerTimer supports three kinds of timer sources, automatically identifies and chooses the most 

stable and reliable source and has a capability for user to change default timer to another one. 

However, there is also space for developing and improving the created timing classes. One of 

the next steps is testing the accuracy and support on the virtual machines. For HighPerTimer, the 

possibility to run under conditions of virtuality will be a great advantage. Now it is unknown, which 

explicit difficulties can be faced and this case should be checked. It is also planned to develop better 

supporting the ARM processor system timer. Since ARM posses neither HPET nor TSC, the only 

way to run on the ARM at this stage is to select OS Timer. In the documentation it is said that an 

ARM implementation must include a system timer, SysTick [17, B3-744] (or it is also called GP 

Timer in the ARM-kernel tree). Presumably, an invocation of the initial ARM system timer can af-

ford to save several additional microseconds and improve the time accuracy. 

 

 

 

Bibliography 
 

1. R. Takano, T. Kudoh, Y. Kodama, F. Okazaki. High-resolution timer-based packet pacing 

mechanism on the Linux operating system // IEICE Transactions on Communication, November 

2011. 

2. J. Micheel, S. Donnelly and I. Graham, Precision time stamping of network packets // Proceed-

ings of the 1
st
 ACM SIGCOMM Workshop on Internet Measurement, San Francisco, Califor-

nia, USA. November 2001. 

3. D. Kachan, E.Siemens, H.Hu. Tools for the high-accuracy time measurement in computer 

systems, (Russian) // 6th Industrial Scientific Conference «Information Society Technologies». 

Moscow, 2012. 

4. H. Hu. Untersuchung und prototypische Implementierung von Methoden zur hochperformanten 

Zeitmessung unter Linux, (German), Bachelor Thesis, Anhalt University of Applied Sciences, 

Koethen. November 2011. 

3.   Performance monitoring with the RDTSC instruction. URL: http://www.ccsl.carleton. 

ca/~jamuir/rdtscpm1.pdf. Issue: June 2011. 

6. E. Corell, P. Saxholm, D. Veitch. A user friendly TSC clock // in Proc. of PAM, Adelaide. Aus-

tralia, March, 2006. 

7. S. Siddha, V. Pallipadi, D. Ven. Getting maximum mileage out of tickles // in Proc. of the 2007 

Linux Symposium, 2007. 

8. Intel IA-PC HPET (High Precision Event Timers) Specification. URL: 
http://www.intel.com/content/dam/www/public/us/en/documents/technical-

specifications/software-developers-hpet-spec-1-0a.pdf. Issue: October 2004. 

9. A. Bakharev, E.Siemens, V.Shuvalov. Methodology of high-accuracy measurements of delay in 

modern computer systems, (Russian) // 6th Industrial Scientific Conference «Information Socie-

ty Technologies». Moscow, 2012. 

10. Enabling Timekeeping Function and Prolonging Battery Life in Low Power Systems, NXP 

Semiconductors. URL: http://www.digikey.com/us/en/techzone/microcontrol 

ler/resources/articles/enabling-timekeeping-function.html. 2011. 

11. Intel SpeedStep Technology for the Intel Pentium M Processor, URL: http:// 

download.intel.com/design/network/papers/30117401.pdf. Issue: March 2012 

http://www.intel/
http://www.digikey.com/us/en/techzone/microcontroller/resources/articles/enabling-timekeeping-function.html
http://www.digikey.com/us/en/techzone/microcontrol%20ler/resources/articles/enabling-timekeeping-function.html.%202011
http://www.digikey.com/us/en/techzone/microcontrol%20ler/resources/articles/enabling-timekeeping-function.html.%202011


 I. Fedotova, E. Siemens  30 

12. Intel 64 and IA-32 Architectures, Software Developer‘s Manual. URL: 
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-

software-developer-vol-1-2a-2b-3a-3b-manual.pdf. Issue: March 2012. 

13. J. Ala-Paavola. Software interrupt based real time clock source code project for PIC microcon-

troller. URL: http://users.tkk.fi/~jalapaav/Electronics/Pic/clock/index. 

html. August 2007. 

14. J. Dike, A user-mode port of the Linux kernel // USENIX Association Berkeley, California, 

USA, 2000. 

15. K. Jain, R. Sekar. User-level infrastructure for system call interposition: A platform for 

intrustion detection and confinement // In Proceedings of the ISOC Symposium on Network and 

Distributed System Security, February 2000. 

16. GNU Operating System Manual, «Elapsed Time». URL: http://www.gnu.org/ 

software/libc/manual/html_node/Elapsed-Time.html. Issue:  November, 2012. 

17. ARM v7-M Architecture Reference Manual, URL: http://infocenter.arm.com/help 

/index.jsp?topic=/com.arm.doc.dui0395b/CIHCAGHH.html. Issue: November 

2010.  

 

 

 

Paper was received for editing 29.10.2012; 

Reprocessed version — 20.11.2012 

 

 

 

Fedotova Irina 

Master student of MG 11 group, SibSUTI, Siberian State University of Telecommunications 

and Informatics, e-mail: fis.irina@gmail.com. 

 

Siemens Eduard 

Communications Technology Chair, Anhalt University of Applied Sciences (Bernburger Str. 57, 

06366 Koethen, Germany) Tel.:  +49 3496 67 2327, e-mail: e.siemens@emw.hs-anhalt.de. 

 

 

 
Автоматическая инициализация источника времени для получения высокоточных 

временны х измерений в пространстве пользователя 

 

И. С. Федотова, Э. Сименс   

 

В статье описываются алгоритмы и логики идентификации высокопроизводительного 

источника времени в пространстве пользователя,  наряду с экспериментальным сравне-

нием точности и стоимости выполнения на ЦПУ доступных временны х источников ОС 

Linux. Данный механизм представлен в рамках унифицированной библиотеки HighPer-

Timer, которая позволяет идентифицировать наиболее подходящий и наиболее точный 

источник как на ПК-платформе, так и на архитектуре ARM, и получать высокоточные 

временные интервалы с разрешением до наносекунд. Данное решение заменяет хоро-

шо известный способ получения значения времени средствами системных вызовов OC 

Linux и обеспечивает  намного более быстрый подход для сбора временны х меток.   

 

Ключевые слова:  точность временны х меток, аппаратные временны е метки, регистрация 

времени, HPET, TSC, высокопроизводительные вычисления. 

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-software-developer-vol-1-2a-2b-3a-3b-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-software-developer-vol-1-2a-2b-3a-3b-manual.pdf
http://users.tkk.fi/~jalapaav/Electronics/Pic/Clock/index.html
http://users.tkk.fi/~jalapaav/Electronics/Pic/Clock/index.html
http://users.tkk.fi/~jalapaav/Electronics/Pic/clock/
http://dl.acm.org/author_page.cfm?id=81332496360&coll=DL&dl=ACM&trk=0&cfid=109656376&cftoken=33976745
http://www.gnu.org/%20software/libc/manual/html_node/Elapsed-Time.html
http://www.gnu.org/%20software/libc/manual/html_node/Elapsed-Time.html

