Preview

The Herald of the Siberian State University of Telecommunications and Information Science

Advanced search

Dynamics and equilibrium in the Cournot model with incomplete information

Abstract

Game simulation of agents’ rational behavior in the market of oligopoly with their incomplete awareness involves multiple repetition of the game and the construction of decisions made trajectory. The problem of constructing the trajectory that guarantees the equilibrium and efficiency from the point of view of assumptions concerning the current awareness of agents in conditions of their limited cognitive capabilities, the capabilities of the agents in determining the value of steps, the rate of convergence is important. A model of dynamic behavior in the Cournot market in the class of linear demand functions and costs of agents is presented. Using minimal information about the market and observing only the current market price, agents in the dynamics d based on the model of collective behavior clarify their output volumes. Sufficient conditions for convergence of dynamics to the Cournot–Nash equilibrium with the steps of agents varying from game to game, but equal in each individual game are obtained. Features and possible solutions for improving the dynamics are discussed. A comparative analysis of the conditions on steps value for a number of trajectories convergence is also carried out.

About the Authors

D. Algazina
АлтГУ
Russian Federation


J. Algazina
АлтГУ
Russian Federation


References

1. Myerson R. Game Theory: Analysis of Conflict. Harvard University Press, 1997. 600 p.

2. Novikov D., Chkhartishvili A. Reflexion and Control: Mathematical Models. Leiden: CRC Press, 2014. 298 p.

3. Kukushkin N. Best Response Dynamics in Finite Games with Additive Aggregation // Games and Economic Behavior. 2004. № 48. P. 94–110.

4. Sakovics J. Games of Incomplete Information without Common Knowledge Priors // Theory and Decision. 2001. № 50. P. 347–366.

5. Беленький В. З., Волконский В. А., Иванков С. А. и др. Итеративные методы в теории игр и программировании. М.: Наука, 1974. 320 с.

6. Васин А. А. Модели динамики коллективного поведения. М.: МГУ, 1989. 156 с.

7. Kamalinejad H., Majda V., Kebriaei H., Kian A. Cournot Games with Linear Regression Expectations in Oligopolistic Markets // Mathematics and Computers in Simulation. 2010. V. 80, № 9. P. 1874–1885.

8. Yang H., Zhang Y. Complex Dynamics Analysis for Cournot Game with Bounded Rationality in Power Market // Journal Electromagnetic Analysis and Applications. 2009. № 1. P. 48–60.

9. Дюсуше О. М. Статическое равновесие Курно–Нэша и рефлексивные игры олигополии: случай линейных функций спроса и издержек // Экономический журнал ВШЭ. 2006. № 1. С. 3–32.

10. Алгазин Г. И., Алгазина Д. Г. Информационное равновесие в модели динамики коллективного поведения на конкурентном рынке // Управление большими системами. 2016. № 64. С. 112–136.

11. Понькина Е. В., Маничева А. С., Комаров П. В. Модель рассредоточенного рынка с барьерами на вход // Изв. Алт. гос. ун-та. 2012. № 1–2 (73). С. 104–109.

12. Algazin G., Algazina D. Collective Behavior in the Stackelberg Model under Incomplete Information // Automation and Remote Control. 2017. V. 78, № 9. P.1619–1630.


Review

For citations:


Algazina D., Algazina J. Dynamics and equilibrium in the Cournot model with incomplete information. The Herald of the Siberian State University of Telecommunications and Information Science. 2019;(4):10-15. (In Russ.)

Views: 3639


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6920 (Print)