IoT traffic generation and processing model with parallel switching systems
Abstract
The article describes the features of the generation and processing of IoT traffic with parallel spatial switching systems. The concept of the Internet of Things (IoT) technology involves routing functions with traffic processing functions combination. This combination is well traced on "Network on Chip" (NoC) technology. The core of most NoC systems are parallel spatial switching systems with 5×5 switching matrices. A simplified model of the NoC switch was implemented by us as a queuing system. To implement the model, the Python programming language was used. In this research, the features of IoT traffic processing with parallel spatial switching system having infinitely large input and output buffers were studied. As a result of the work, the values of the maximum and average queues in output buffer devices of the system were obtained.
About the Authors
D. KutuzovRussian Federation
A. Osovskiy
Russian Federation
O. Stukach
Russian Federation
References
1. Perry Lea. Internet of Things for architects: architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security. Publicerad: 2018, Birmingham: Packt Publishing Ltd. Copyright: 2018. 505 p. ISBN 9781788470599.
2. Wei-Hung Hsu, Qiuhui Li, Xue-Hai Han, and Chih-Wei Huang. A Hybrid IoT Traffic Generator for Mobile Network Performance Assessment // 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC).
3. Levakov A. K., Sokolov A. N., Sokolov N. A. Models of incoming traffic in packet networks // T-Comm. 2015. V. 9, № 5. P. 91–94.
4. Wen-Xiang Li; Jun Xu; Hao Jiang. Queuing States Analysis on a Hybrid Scheduling Strategies for Heterogeneous Traffics in IOT // 2012 International Conference on Computer Science and Service System.
5. Messier G G., Finvers I. G. Traffic Models for Medical Wireless Sensor Networks // IEEE Communications Letters. 2007. V. 11, № 1. P. 13–15. DOI:10.1109/LCOMM.2007.061291, URL: https://ieeexplore.ieee.org/document/4114210
6. Starov D., Kutuzov D., Stukach O., Osovskiy A. Measuring complex for studying galvanomagnetic phenomena in multigrafene layers // 2017 International Siberian Conference on Control and Communications (SIBCON), DOI:10.1109/SIBCON.2017.7998529, URL: http://ieeexplore.ieee.org/document/7998529/
7. Vytovtov K., Barabanova E., Zouhdi S. Penetration effect in uniaxial anisotropic metamaterials // Appl. Phys. A. 2018. P. 124–137. https://doi.org/10.1007/s00339-018-1563-z
8. Vytovtov K., Barabanova E. Unusual penetration effect in ferromagnetics. Negative refraction under tangential wave incidence // Journal of Physics: Conf. Series. 2018. 1092 (1), 012164. DOI:10.1088/1742-6596/1092/1/012164
9. Georgakopoulos G. F. Buffered Crossbar Switches, Revisited: Design Steps, Proofs and Simulations Towards Optimal Rate and Minimum Buffer Memory // IEEE ACM Transactions on networking. 2008. V. 16, № 6. DOI:10.1109/TNET.2007.911441. URL: http://ieeexplore.ieee.org/document/4460578/
10. Vytovtov K. A., Barabanova E. A., and Podlazov V. S. Model of Next-Generation Optical Switching System Distributed Computer and Communication Networks // 21st International Conference DCCN 2018, Moscow, Russia, September 17–21, 2018. P. 377–386.
11. Barabanov I. O., Maltseva N. S., Barabanova E. A. Switching cell for information transmission optical systems // 2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE 2016). P. 343–347. DOI:10.1109/APEDE.2016.7879025, URL: https://ieeexplore.ieee.org/document/7879025
12. Vytovtov K. A., Barabanova E. A., Barabanov I. O. Next-generation switching system based on 8х8 self-turning optical cell // International Conference on Actual Problems of Electron Devices Engineering (APEDE 2018). P. 306–310.
13. Anuja Naik, Tirumale K. Ramesh. Efficient Network on Chip (NoC) using heterogeneous circuit switched routers // 2016 International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA), Bangalore, India. 10–12 Jan. 2016. DOI:10.1109/VLSISATA.2016.7593043, URL: https://ieeexplore.ieee.org/document/7593043
14. Wenjie Li, Yiping Gong, Bin Liu. Performance Evaluation of Crossbar Switch Fabrics in Core Routers // 17th International Conference on Advanced Information Networking and Applications (AINA), Xi'an, China, 29–29 March 2003. DOI:10.1109/AINA.2003.1192996, URL: https://ieeexplore.ieee.org/document/1192996
15. Wen-Chung Tsai, Ying-Cherng Lan, Yu-Hen Hu, and Sao-Jie Chen. Networks on Chips: Structure and Design Methodologies // Journal of Electrical and Computer Engineering. 2012. Article ID 509465. URL: https://doi.org/10.1155/2012/509465
16. Kutuzov D. V., Osovsky A. V., Starov D. V., Motorina E. A. Development of parallel switching facilities for 5G communication systems // Radiotekhnika. 2019. V. 83, № 3. 2019. P. 70–79.
17. Kutuzov D., Utesheva A. Switching Element for Parallel Spatial Systems // International Siberian Conference on Control and Communications (SIBCON-2011), Krasnoyarsk, September 15−16, 2011. P. 60–62. URL: http://ieeexplore.ieee.org/document/6072595/
18. Kutuzov D., Stukach O. Algorithms of Parallel Switching for Multistage Schemes // 2013 International Siberian Conference on Control and Communications (SIBCON), Krasnoyarsk, September 12−13, 2013. URL: http://ieeexplore.ieee.org/document/6693642/
19. Kutuzov D., Osovskiy A., Stukach O. Modeling of interconnection process in the parallel spatial switching systems // 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow; 12–14 May 2016. URL: http://ieeexplore.ieee.org/document/7491852/
20. Kutuzov D., Osovsky A., Stukach O., Starov D. CPN-based model of parallel matrix switchboard // 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT). Moscow, March 14–16, 2018. URL: https://ieeexplore.ieee.org/document/8337180
Review
For citations:
Kutuzov D., Osovskiy A., Stukach O. IoT traffic generation and processing model with parallel switching systems. The Herald of the Siberian State University of Telecommunications and Information Science. 2019;(4):78-87. (In Russ.)