The route choosing methodology for networks and communications laying
https://doi.org/10.55648/1998-6920-2022-16-1-97-107
Abstract
In this paper a new route selecting method for laying engineering communications taking into account the urban development saturation with various infrastructural objects, designed communications type and purpose, communications rotation angles around a given axis when avoiding obstacles, and other restrictions is proposed. The communications laying routes unlike the traditional representation are considered as three-dimensional object in space which has a restriction according both plan and profile. In addition, the communications placement region is considered as a three-dimensional space and is modeled as a three-dimensional computational network. The communications optimization task in the form of minimal hypernet structure with restrictions and requirements imposed on the designed communications is proposed. A modified ray tracing method enabling to choose a path depending on the angular and linear coordinates predetermining the communications position in space is proposed.
About the Author
G. Y. ToktoshovRussian Federation
Gulhzigit Y. Toktoshov, Candidate of technical sciences, Docent, Siberian State University of Telecommunications and Information Sciences (SibSUTIS); Researcher, The Institute of Computational Mathematics and Mathematical Geophysics SB RAS
Novosibirsk
References
1. Kazakov A. L., Lempert A. A. Ob odnom podhode k resheniju zadach optimizacii, vozni-kajushhih v transportnoj logistike [On one approach to solving optimization problems arising in transport logistics]. Avtomatika i telemehanika. 2011, no. 7, pp. 50-57.
2. Djebedjian B., El-NaggarM., and Shahin I. Optimal design of gas distribution network: a case study. Mansoura Engineering Journal (MEJ). 2011, vol. 36, no. 3, pp. 35-51.
3. Heidarifar M., and Ghasemi H. A network topology optimization model based on substation and node-breaker modeling. IEEE Trans. on Power Systems. 2016, vol. 31, no. 1, pp. 247-255.
4. Li F., Liu Q., Guo X., and Xiao J. A survey of optimization method for oil-gas pipeline network layout. Proc. International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC), April 1-3, 2015, Shenyang, China, pp. 257-260.
5. Edgar T. F., Himmelblau D. M., and Bickel T. C. Optimal design of gas transmission networks. SPE J. 1978, no. 18, pp. 96-104.
6. Dong G., Qing T., Du R., Wang C., Li R. et al. Complex network approach for the structural optimization of global crude oil trade system. Journal of Cleaner Production. 2020, vol. 251. URL: https://doi.org/10.1016/j.jclepro.2019.119366 (access date: 19.01.2022).
7. Liong S.-Y., and Atiquzzaman M. Optimal design of water distribution network using shuffled complex evolution. Journal of The Institution of Engineers (Singapore). 2004, vol. 44, is. 1, pp. 93-107.
8. Tricarico S., Gargano R., De Marinis G., Morley M. S., Kapelan Z., Savic D. A. The influence of network topology on water distribution system performance. Proc. 10th International Conference on Hydroinformatics (HIC), 2012, Hamburg, Germany, URL: https://www.researchgate.net/publication/230931471_The_Influence_of_Network_Topology_on_Water_Distribution_System_Performance (access date: 28.01.2022).
9. Lee H. M., Yoo D. G., Sadollah A., and Kim J. H. Optimal cost design of water distribution networks using a decomposition approach. Engineering Optimization. 2016, vol. 48, no. 12, pp. 2141-2156. URL: https://doi.org/10.1080/0305215X.2016.1157689 (access date: 03.02.2022).
10. Lebedjancev V. V., Derevjashkin V. M. Tenzornaja model' seti svjazi [Tensor model of a communication network]. Vestnik SibGUTI. 2014, no. 2, pp. 50-56.
11. Odrin V. M. Metod morfologicheskogo analiza tehnicheskih system [Method of morphological analysis of technical systems]. Moscow: VNIIPI, 1989, 312 p.
12. Stennikov V. A., Chemezov A. A. Primenenie algoritma perebora derev'ev i metoda imi-tacii otzhiga dlja shemno-strukturnoj optimizacii teplovyh setej [Application of tree enumeration algorithm and annealing simulation method for scheme-structural optimization of heat networks]. Programmnye produkty i sistemy. 2018, no. 2 (31), pp. 387-395.
13. Naumov I. V., Jamshhikova I. V. Matematicheskoe obosnovanie vybora optimizacionnoj modeli trassirovki jelektricheskoj seti [Mathematical substantiation of the choice of an optimization model for tracing an electrical network]. Evrazijskij Sojuz Uchenyh (ESU). 2015, no. 7 (16), pp. 123-127.
14. Stepanov V. P. Optimizacija marshrutov na dorozhnoj seti [Route optimization on the road network]. Nauka i obrazovanie. 2012, no. 5, pp.1-12.
15. Akimov S. V. Model' morfologicheskogo mnozhestva urovnja identifikacii [Model of the morphological set of the level of identification]. Trudy uchebnyh zavedenij svjazi. 2005, no. 172, pp. 120-135.
16. Golumbic M. C., Kaplan H., Shamir R. Graph sandwich problems. Journal of Algorithms. 1995, no. 19 (3), pp. 449-473. DOI:10.1006/jagm.1995.1047.
17. Poulovassilis A., Levene M. A nested-graph model for the representation and manipulation of complex objects. J. ACM Trans. Inf. Syst. 1994, vol. 12, pp. 35-68.
18. Orlowski S., Koster A. M. C. A., Raack C., Wessäly R. Two-layer network design by branch-and-cut featuring MIP-based heuristics. Proc. 3rd International Network Optimization Conference (INOC), Spa, Belgium, 2007, pp. 114-119.
19. Capone A., Carello G., Matera R. Multi-layer network design with multicast traffic and statistical multiplexing. Proc. IEEE Global Telecommunications Conference (IEEE GLOBECOM), Washington, USA, 2007, pp. 2565-2570.
20. Kurant M., Thiran P. Layered complex networks. J. Phys. Rev. Lett. 2006, vol. 96, pp. 1-4.
21. Popkov V. K. O modelirovanii gorodskih transportnyh sistem gipersetjami [On the modeling of urban transport systems by hypernets]. Avtomatika i telemehanika. 2011, vol. 72, no. 6, pp. 179-189.
22. Toktoshov G. Y., Jurgenson A. N., Migov D. A. O slozhnosti zadach optimizacii setej inzhenernyh kommunikacij [On the complexity of engineering network optimization problems] T-Comm: Telekommunikacii i transport. 2020, vol. 14, no. 9, pp. 17-23.
23. Chen B., and Kaufman A. 3D volume rotation using shear transformations. Graphical Models. 2000, vol. 62, is. 4, pp. 308-322.
24. Schmitt A., Muller H., and Leister W. Ray Tracing Algorithms - Theory and Practice. Theoretical Foundations of Computer Graphics and CAD. Jan 1988, pp. 997-1030.
25. Trassirovka luchej [Ray tracing] [Electronic resource]. URL: https://studme.org/156199/informatika/trassirovka_luchey (access date: 20.03.2022).
Review
For citations:
Toktoshov G.Y. The route choosing methodology for networks and communications laying. The Herald of the Siberian State University of Telecommunications and Information Science. 2022;(1):97-107. (In Russ.) https://doi.org/10.55648/1998-6920-2022-16-1-97-107