https://doi.org/10.55648/1998-6920-2022-16-2-55-62
About the Author
S. B. ZhanayevaRussian Federation
Saule B. Zhanayeva, Postgraduate student
Novosibirsk
References
1. Tihvinskiy V. O., Terentev S. V., Koval V. A. Seti mobilnoy cvyazi 5G: tehnologii, arhitektura i uslugi [Mobile Networks 5G: technologies, architecture and services]. Moscow, Media Publishers, 2021, 375 p.
2. Brink H., Richards J. W., Fetherolf M. Real world Machine Learning. US, Manning Publications Co., 2017, 266 p.
3. Yin-Hsin Liu, Yao-Chung Tu, Chang-Yu Hsu, Hsin-Chieh Chao. Predicting malfunction of mobile network base station using machine learning approach. Proceedings of the 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), 18-20 September, Matsue, Japan, 2019, pp. 1-4. DOI: 10.23919/APNOMS.2019.8892894.
4. Kumar Y., Farooq H., Imran A. Fault Prediction and Reliability Analysis in a Real Cellular Network. Proceedings of 13th International Wireless Communications and Mobile Computing Conference (IWCMC), 26-30 June, pp. 1090-1095, Valencia, Spain, 2017. DOI: 10.1109/IWCMC.2017.7986437.
5. Corazza A., Isgro F., Longobardo L., Prevete R. A machine learning approach for predictive maintenance for mobile phones service providers. Advances on P2P, Parallel, Grid, Cloud and Internet Computing. Lecture Notes on Data Engineering and Communications Technologies, Springer International Publishing, 2017. DOI: 10.1007/978-3-319-49109-7_69.
6. Otani T., Toube H., Kimura T., Furutani M. Application of AI to mobile network operation. ITU Journal: ICT Discoveries, 2018, Special Issue, no. 1, pp. 43-48.
7. Hu C., Youn B. D., Kim T. Semi-supervised learning with co-training for data-driven prognostics. Proceedings of IEEE Int. Conf. on Prognostics and Health Management: Enhancing Safety, Efficiency, Availability, and Effectiveness of Systems Through PHM Technology and Application, 18-21 June, Denver, CO, USA, 2012, pp. 1297-1306. DOI: 10.1109/ICPHM.2012.6299526.
8. Yousefia N., Tsianikasa S., Zhoua J., Coit D. W. Inspection plan prediction for multi-repairable component systems using neural network. Proceedings of the 2020 IISE Annual Conference, Institute of Industrial and Systems Engineers, IISE, United States, 1-3 Nov, 2020.
9. Schmidt B., Wang L. Cloud-enhanced predictive maintenance. Int J Adv Manuf Technol, 2018, no. 99, pp. 5–13. DOI 10.1007/s00170-016-8983-8.
10. Wei Wu, Feng Zhang, Min Liu, Weiming Shen. A Multi-agent Based Failure Prediction Method Using Neural Network Algorithm. Proceedings of 2014 IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA., 2014, pp. 2268-2272, DOI: 10.1109/SMC.2014.6974263.
11. Karballaeezadeh N., Zaremotekhases F., Shamshirband S., Mosavi A., Nabipour N., Csiba P., Várkonyi-Kóczy A. Intelligent Road Inspection with Advanced Machine Learning; Hybrid Prediction Models for Smart Mobility and Transportation Maintenance Systems. Energies, 2020, no. 13, pp. 1718. DOI: 10.3390/en13071718.
Review
For citations:
Zhanayeva S.B. . The Herald of the Siberian State University of Telecommunications and Information Science. 2022;(2):55-62. (In Russ.) https://doi.org/10.55648/1998-6920-2022-16-2-55-62