Итеративный метод построения деревьев регрессии
Аннотация
Об авторах
Г. А. МельниковРоссия
В. В. Губарев
Россия
Список литературы
1. Classification and regression trees / L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone. Belmont: Wadsworth International Group, 1984. 259 p.
2. Hyafil L., Rivest R L. Constructing optimal binary decision trees is NP-complete // Information Processing Letters. 1976. V. 5, № 1. P. 15-17.
3. Quinlan J.R. Learning with continuous classes // Proc. AI’92, 5th Australian Joint Conference on Artificial Intelligence. 1992. P. 343-348.
4. Karalic A. Employing linear regression in regression tree leaves // Proceedings of the 10th European Conference on Artificial Intelligence. 1992. P. 440-441.
5. Potts D., Sammut C. Incremental learning of linear model trees // Machine Learning. 2005. V. 61. P. 5-48.
6. Vogel D., Asparouhov O., Scheffer /. Scalable look-ahead linear regression trees // In: Proc. of 13th ACM SIGKDD. 2007. P. 757-764.
7. Loh W.-Y. Regression trees with unbiased variable selection and interaction detection // Statistica Sinica. 2002. V. 12. P. 361-386.
8. Torgo L. A Comparative study of reliable error estimators for pruning regression trees // In Proceeding of the Iberoamerican Conference on Artificial Intelligence. 1998. P. 1-12.
9. Мельников Г.А. Применение методов искусственного интеллекта для исследования инфекционных заболеваний: магистерская дис.. «Магистр техники и технологии»: 230100. г. Новосибирск, 2012. 141 с.
10. Murthy Sreerama K. Automatic construction of decision trees from data: A multi-disciplinary survey // Data Mining and Knowledge Discovery. 2005. V. 2, № 4. P. 345-389.
11. Chen J., Chen Z. Extended Bayesian information criteria for model selection with large model spaces // Biometrika. 2008. V. 95, № 3. P. 759-771.
12. Frank A., Asuncion A. UCI machine learning repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. 2010.
13. KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework / J. Alcalâ-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garda, L. Sânchez, F. Herrera // Journal of Multiple-Valued Logic and Soft Computing. 2011. V. 17. P. 255-287.
14. Gramacy R.B. Model choice and data mining [Электронный ресурс]. URL: http://faculty.chicagobooth.edu/robert.gramacy/teaching/ara/lect7.pdf (дата обращения: 14.09.2014).
Рецензия
Для цитирования:
Мельников Г.А., Губарев В.В. Итеративный метод построения деревьев регрессии. Вестник СибГУТИ. 2016;(4):59-67.
For citation:
Melnikov G.A., Gubarev V.V. The iterative method of regression trees induction. The Herald of the Siberian State University of Telecommunications and Information Science. 2016;(4):59-67. (In Russ.)