Preview

The Herald of the Siberian State University of Telecommunications and Information Science

Advanced search

Structural-parametric adaptation of genetic algorithm

Abstract

The article considers the methodology of genetic algorithm complex adaptation which allows us to automate choice of genetic operator from given set and to adapt its actual parameters. Such approach allows us to increase computational algorithm universality and to decrease evolution time because of using the methods which have already shown their efficiency in similar task solution. Dynamic set of rules connecting operator parameter values with their operand statistical characteristic is proposed for parametric adaptation procedure realization.

About the Author

Y. .. Minaeva
Воронежский государственный технический университет
Russian Federation


References

1. Емельянов В. В., Курейчик В. В., Курейчик В. М. Теория и практика эволюционного моделирования. М.: Физматлит. 2003. 432 с.

2. Nunez-Letamendia L. Fitting the control parameters of a genetic algorithm: An application to technical trading systems design // European Journal of Operational Research. 2007. Vol. 179, № 3. P. 847-868.

3. Harik G. R., Lobo F. G. A parameter-less genetic algorithm // Proceedings of the Genetic and Evolutionary Computation Conference. 1999. P. 258-265.

4. Eiben A. E., Schut M. C., De Wilde A. R. Boosting genetic algorithms with self-adaptive selection // Proceedings of the IEEE Congress on Evolutionary Computation. 2006. P. 1584-1589.

5. Hinterding R., Michalewicz Z., Eiben A. E. Adaptation in Evolutionary Computation: a Survey // Proceedings of the Fourth IEEE Conference on Evolutionary Computation. 1997. P. 65-69.

6. Meyer-Nieberg S., Beyer H.-G. Self-adaptation in evolutionary algorithms // Studies in Computational Intelligence. 2007. Vol. 54. P. 47-75.

7. Laoufi A., Hadjeri S., Hazzab A. Adaptive probabilities of crossover and mutation in genetic algorithms for power economic dispatch // International Journal of Applied Engineering Research. 2006. Vol. 1, № 3. P. 393-408.

8. Lin W.-Y., Lee W.-Y., Hong T.-P. Adapting crossover and mutation rates in genetic algorithms // Journal of Information Science and Engineering. 2003. Vol. 19. P. 889-903.

9. Yang S. Adaptive crossover in genetic algorithms using statistics mechanism // Proceedings of the 8th International conference on Artificial life. 2002. P. 182-185.

10. Tabarzad M. A., Lucas C., Hamzeh A. Statistical genetic algorithm // International Journal of Computer, Electrical, Automation, Control and Information Engineering. 2008. Vol. 2, № 2. P. 483-487.

11. Whitley D. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best // Proceedings of the Third International Conference on Genetic Algorithms. 1989. P. 116-121.

12. Goldberg D. E., Deb K. A comparative analysis of selection schemes used in genetic algorithms // Foundations of Genetic Algorithms. 1991. P. 69-93.

13. Back T., Fogel D. B., Michalewicz Z. Evolutionary Computation! Basic Algorithms and Operators. IOP Publishing ltd. 2000. 339 p.

14. Цой Ю. Р., Спицын В. Г. Исследование генетического алгоритма с динамически изменяемым размером популяции // Труды Международной научно-технической конференции «Интеллектуальные системы (IEEE AIS'05)». Научное издание. М.: Изд-во физикоматематической литературы. 2005. С. 241-246.

15. Eiben A. E., Marchiori E., Valko V. A. Evolutionary algorithms with on-the-fly population size adjustment // Parallel Problem Solving from Nature VIII. 2004. Vol. 3242. P. 41-50.

16. Arabas J., Michalewicz Z., Mulawka J. GAVAPS - a genetic algorithm with varying population size // Proc. of the First IEEE International Conference on Evolutionary Computation. 1994. P. 73-78.

17. Back T., Eiben A. E., Vaart N. A. L. An empirical study on GAs without parameters // Parallel Problem Solving from Nature VI. 2000. Vol. 1917. P. 315-324.

18. Goldberg D. E., Deb K., Clark J. H. Genetic algorithms, noise, and the sizing of populations // Complex Systems. 1992. № 6. P. 333-362.

19. Семенкина М. Е. Самоадаптивные эволюционные алгоритмы проектирования информационных технологий интеллектуального анализа данных // Искусственный интеллект и принятие решений. 2013. № 1. С. 13-23.

20. Hilding F. G., Ward K. Automated operator selection on genetic algorithms // Proceedings of the 9th international conference on Knowledge-Based Intelligent Information and Engineering Systems. 2005. № 4. P. 903-909.

21. Shamsaei R., Hamzeh A., Rahmani A. Adaptive genetic algorithms based on learning classifier systems // 9'th Computer Society of Iran Computer Conference. 2004.


Review

For citations:


Minaeva Y... Structural-parametric adaptation of genetic algorithm. The Herald of the Siberian State University of Telecommunications and Information Science. 2017;(1):83-89. (In Russ.)

Views: 905


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6920 (Print)