Preview

The Herald of the Siberian State University of Telecommunications and Information Science

Advanced search

Homogeneity test power as utility function in the theory of decision making under risk and uncertainty

Abstract

There are a lot of statistical tests for hypothesis testing and some statistical tests are preferable than others in a certain alternative hypothesis. It needs some reliable method for selecting the powerful statistical test. To solve the problem, we create types of alternative hypotheses (with different number of intersection points of reliability function). For every type we create some alternative hypotheses (with various distribution of survival function) with similar behavior of survival functions (the behavior of test power is similar too) to simulate the power of statistical tests and then we apply the Wald test to conclude what test is the most preferable in a certain type of alternative hypotheses.

About the Authors

P. .. Philonenko
НГТУ
Russian Federation


S. .. Postovalov
НГТУ
Russian Federation


References

1. Philonenko P., Postovalov S. A power comparison of homogeneity tests for randomly censored data / P. Philonenko, S. Postovalov // Applied methods of statistical analysis. Applications in survival analysis, reliability and quality control AMSA2013, Novosibirsk, 25-27 Sept. 2013: proc. of the intern. workshop. Novosibirsk: NSTU publ., 2013. P. 227-237.

2. Philonenko P., Postovalov S. A Comparison of Homogeneity Tests for Different Alternative Hypotheses // Statistical Models and Methods for Reliability and Survival Analysis: monograph. London: Wiley-ISTE, 2013. Chap. 12. P. 177-194.

3. Wald A. Statistical decision functions which minimize the maximum risk. The Annals of Mathematics. 1945. V. 46, № 2. P. 265-280.

4. Johnson E. J., Payne J. W. Effort and accuracy in choice. Management Science. 1985. V. 31, № 4. P. 395-414.

5. Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bulletin. 1945. V. 1, № 6. P. 80-83.

6. Lee E. T., Wang J. W. Statistical Methods for Survival Data Analysis. N. Y: Wiley, 2003.

7. Gehan E. A. A generalized Wilcoxon test for comparing arbitrarily singly-censored samples // Biometrika. 1965. V. 52, № 1/2. P. 203-223.

8. Peto R., Peto J. Asymptotically efficient rank invariant test procedures // J. Royal Statist. Soc. Ser. A (General). 1972. V. 135, № 2. P. 185-207.

9. Kaplan E. L. and Meier P. Nonparametric estimator from incomplete observation // J. Amer. Statist. Assoc. 1958. V. 53. P. 457-481.

10. Savage I. R. Contributions to the Theory of Rank Order Statistics: The Two Sample Case // Annals of Mathematical Statistics. 1956. V. 27. P. 590-615.

11. Mantel N. Evaluation of Survival Data and Two New Rank Order Statistics Arising in Its Consideration // Cancer Chemotherapy Reports. 1966. V. 50. P. 163-170.

12. Pepe M. S., Fleming T. R. Weighted Kaplan-Meier statistics: A class of distance tests for censored survival data // Biometrics. 1989. V. 45. P. 497-507.

13. Ruvie Lou Maria C. Martinez, Joshua D. Naranjo. A pretest for choosing between logrank and wilcoxon tests in the two-sample problem // International Journal of Statistics. 2010. V. LXVIII, № 2, P. 111-125.

14. Philonenko P., Postovalov S. A new two-sample test for choosing between log-rank and Wilcoxon tests with right-censored data // Journal of Statistical Computation and Simulation. 2015. V. 85, № 14. P. 2761-2770.

15. Philonenko P., Postovalov S., Kovalevskii A. The limit test statistic distribution of the maximum value test for right-censored data // Journal of Statistical Computation and Simulation. 2016. V. 86, № 17. P. 3482-3494.

16. Welch B. L. The generalization of Student's problem when several different population variances are involved // Biometrika. 1947. V. 34. P. 29-35.

17. Student. The probable error of a mean. // Biometrika. 1908. V. 6, № 1. P. 1-25.

18. Bagdonavicus V. B., Levuliene R. J., Nikulin M. S. Zdorova-Cheminadeo “Tests for equality of survival distributions against non-location alternatives” // Lifetime Data Analysis. 2004. V. 10, № 4. P. 445-460.

19. Bagdonavicus V. B., Nikulin M. On goodness-of-fit tests for homogeneity and proportional hazards // Applied Stochastic Models in Business and Industry. 2006. V. 22, № 1. P. 607-619.

20. Bagdonavicus V. B., Kruopis J., Nikulin M. S. Nonparametric tests for censored data. John Wiley & Sons, Inc., New York, 2010, 233 p.

21. Bagdonavicus V. B., Kruopis J., Nikulin M. S. Censored and Truncated Data, in Non-parametric Tests for Censored Data. John Wiley & Sons, Inc, Hoboken, NJ, USA. 2013.

22. Titchmarsh E.C. The theory of functions. Oxford University Press, 1976.

23. Kolmogorov A. Some Works of Recent Years in the Field of Limit Theorems in the Theory of Probability // Vestnik Moskov, Univ. Ser. Fiz.-Mat. Estest. Nauk. 1953. V. 8. P. 29-38.


Review

For citations:


Philonenko P..., Postovalov S... Homogeneity test power as utility function in the theory of decision making under risk and uncertainty. The Herald of the Siberian State University of Telecommunications and Information Science. 2017;(3):3-20. (In Russ.)

Views: 736


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6920 (Print)