Preview

The Herald of the Siberian State University of Telecommunications and Information Science

Advanced search

Analysis of the possibility of using graphene in the design of reflectarray unit cells

https://doi.org/10.55648/1998-6920-2021-15-3-92-103

Abstract

Flexible reflectarrays are widely used as deployable antennas in the design of small satellites (weight about 320 kg) to reduce the weight and size characteristics. Modern flexible reflectar-ray antenna use metals as the conductive material. Graphene has unique properties that are suitable for flexible antenna systems - mechanical stability, low specific gravity and cost. This paper is the first to consider the possibility of using graphene as a conductive material in the design of unit cell elements of a reflectarray antenna in the GHz range: a patch element, a patch element with a ring, and a patch element with a delay line. The minimum values of the incident wave amplitude and the phase variation range for each element were -4.08 dB and 327.6 degrees, -19.63 dB and 684.73 degrees, -6.24 dB and 526 degrees, respectively. The comparison of the obtained characteristics of unit cell elements with similar silver elements is carried out. Comparison of the characteristics with the literature analogs showed that the graphene unit cell elements of the reflectarray antenna have satisfactory characteristics.

About the Authors

A. .. Cherevko
СибГУТИ
Russian Federation


Y. .. Morgachev
СибГУТИ
Russian Federation


References

1. Chandra A. et al. Inflatable membrane antennas for small satellites // 2020 IEEE Aerospace Conference. 2020. P. 1-8.

2. Li H., Wang B. Z., Shao W. Novel Broadband Reflectarray Antenna with Compound-CrossLoop Elements for Millimeter-wave Application // Journal of Electromagnetic Waves and Applications. 2007. V. 21, № 10. P. 1333-1340.

3. Echo 1, 1A, 2 Quicklook. [Электронный ресурс]. URL: https://web.archive.org/web/20100527211747/http:/samadhi.jpl.nasa.gov/msl/QuickLooks/echoQL.html (дата обращения: 20.09.2021).

4. Joseph H. Y. Antenna Arraying Techniques in the Deep Space Network. NJ: John Wiley & Sons. 2003. 163 p.

5. Dronadula R., Benaroya H. Hybrid lunar inflatable structure // Acta Astronautica. 2021. V. 179. P. 42-55.

6. Ruggiero E. J., Inman D. J. Gossamer Spacecraft: Recent Trends in Design, Analysis, Experimentation, and Control // Journal of Spacecraft and Rockets. 2006. V. 43, № 1. P. 10-24.

7. Santiago-Prowald J., Baier H. Advances in deployable structures and surfaces for large apertures in space // CEAS Space Journal. 2013. V. 5, № 3-4. P. 89-115.

8. Qi X. et al. Design and optimization of large deployable mechanism constructed by Myard linkages // CEAS Space Journal. 2013. V. 5, № 3-4. P. 147-155.

9. Maria A. et al. Reflectarray membrane study for deployable SAR antenna // 3rd European Conference on Antennas and Propagation, 2009.

10. Tahseen M. M., Kishk A. A. Flexible and Portable Textile-Reflectarray Backed by Frequency Selective Surface // IEEE Antennas and Wireless Prop. Let. 2018. V. 17, № 1. P. 46-49.

11. Carrasco E., Perruisseau-Carrier J. Reflectarray Antenna at Terahertz Using Graphene // IEEE Antennas and Wireless Propagation Letters. 2013. V. 12. P. 253-256.

12. Черевко А. Г., Моргачев Ю. В. Моделирование плазмонного одиночного графенового отражательного модуля терагерцового диапазона // ИнтерЭкспо Гео-Сибирь XV Международный научный конгресс: сборник материалов в 9 Т. Новосибирск, 2019. Т. 9. С. 66-71.

13. Akbari M. et al. Fabrication and Characterization of Graphene Antenna for Low-Cost and Environmentally Friendly RFID Tags // IEEE Antennas and Wireless Propagation Letters. 2016. V. 15. P. 1569-1572.

14. Scida A. et al. Application of graphene-based flexible antennas in consumer electronic devices // Materials Today. 2018. V. 21, № 3. P. 223-230.

15. Wang W. et al. High-performance printable 2.4 GHz graphene-based antenna using watertransferring technology // Science and Technology of Advanced Materials. 2019. V. 20, № 1. P.870-875.

16. Lamminen A. et al. Graphene-Flakes Printed Wideband Elliptical Dipole Antenna for Low-Cost Wireless Communications Applications // IEEE Antennas and Wireless Propagation Letters. 2017. V. 16. P. 1883-1886.

17. Kumar J. et al. Graphene: A possible low-cost eco-friendly solution for antenna applications // IEEE Applied Electromagnetics Conference (AEMC), 2017.

18. Huang X. et al. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications // Applied Physics Letters. 2015. V. 106 (20). 203105.

19. Wu W. W., Qu S. W., Zhang X. Q. Single-layer reflectarray with novel elements for wideband applications // Microwave and Optical Technology Letters. 2014. V. 56, № 4. P. 950-954.

20. Li H., Wang B. Z., Shao W. Novel Broadband Reflectarray Antenna with Compound-CrossLoop Elements for Millimeter-wave Application // Journal of Electromagnetic Waves and Applications. 2007. V. 21, № 10. P. 1333-1340.

21. Derafshi I., Komjani N., Mohammadirad M. A Single-Layer Broadband Reflectarray Antenna by Using Quasi-spiral Phase Delay Line // IEEE Antennas and Wireless Propagation Letters. 2015. V. 14. P. 84-87.

22. Zhao J.J. et al. Design of a broadband reflectarray using meander-shaped elements // Microwave and Optical Technology Letters. 2011. V. 54, № 2. P. 500-503.

23. Payam N., Yang F., Elsherbeni A. Z. Reflectarray antennas: theory, designs, and applications. Hoboken, NJ: John Wiley & Sons, Inc, 2018. 424 p.

24. Qotolo S. F., Hassani H. R., Naser-Moghadasi M. A novel broadband reflectarray antenna with lattice stubs on square element for Kuband application // Microwave and Optical Technology Letters. 2015. V. 57, № 11. P. 2699-2702.

25. Qin-Y. L., Yong-Chang J., Gang Z. A Novel Microstrip Rectangular-Patch/Ring- Combination Reflectarray Element and Its Application // IEEE Antennas and Wireless Propagation Letters. 2009. V. 8. P. 1119-1122.

26. Long L. et al. Novel Broadband Planar Reflectarray with Parasitic Dipoles for Wireless Communication Applications // IEEE Antennas and Wireless Prop. Let. 2009. V. 8. P. 881-885.

27. Yoon J. H. et al. Broadband Microstrip Reflectarray with Five Parallel Dipole Elements // IEEE Antennas and Wireless Propagation Letters. 2015. V. 14. P. 1109-1112.

28. Tian C., Jiao Y.-C., Liang W.-L. A Broadband Reflectarray Using Phoenix Unit Cell // Progress in Electromagnetics Research Letters. 2014. V. 50. P. 67-72.

29. Xue F. et al. A broadband KUband microstrip reflectarray antenna using single-layer fractal elements // Microwave and Optical Technology Letters. 2016. V. 58, № 3. P. 658-662.

30. Venneri F. et al. Aperture-Coupled Reflectarrays with Enhanced Bandwidth Features // Journal of Electromagnetic Waves and Applications. 2008. V. 22, № 11-12. P. 1527-1537.

31. Li R.H. et al. A Novel Element for Broadband Reflectarray Antennas // Journal of Electromagnetic Waves and Applications. 2011. V. 25, № 11-12. P. 1554-1563.

32. Henry D. et al. Long-Range Wireless Interrogation of Passive Humidity Sensors Using Van-Atta Cross-Polarization Effect and Different Beam Scanning Techniques // IEEE Transactions on Microwave Theory and Techniques. 2017. V. 65, № 12. P. 5345-5354.

33. Del Barrio S. C. et al. Screen- printed silverink antennas for frequency- reconfigurable architectures in LTE phones // Electronics Letters. 2014. V. 50, № 23. P. 1665-1667.

34. Cherevko A. G. et al. Graphene Antenna on a Biodegradable Substrate for Frequency Range of Cellular Operators // XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), 2018.

35. Черевко А.Г. и др. Оценка критического радиуса изгиба графеновых антенн // Вестник СибГУТИ. 2019. № 4. С. 88-92.

36. Черевко А.Г. и др. Графеновая антенна на биоразлагаемой подложке для диапазона сотовых операторов // Труды XIV Международной научно-технической конференции «Актуальные проблемы электронного приборостроения». Новосибирск. 2018. Т. 4. С. 103-105.

37. Черевко А. Г., Моргачев Ю. В. Особенности моделирования графеновых антенн терагер-цового диапазона // Интерэкспо Гео-Сибирь. 2017. Т. 8. С. 215-219.

38. Черевко А. Г., Моргачев Ю. В. Моделирование разворачиваемой экологической спиральной конической логарифмической графеновой антенны для спутниковой связи // Интерэкспо Гео-Сибирь. 2020. Т. 8, № 2. С. 62-68.

39. Черевко А. Г., Моргачев Ю. В. Графеновая антенна на биоразлагаемой подложке для частотного диапазона GSM-1800 // Материалы Международной научно-технической конференции «INTERMATIC - 2018», 20 - 24 ноября 2018 г., Москва. С. 734-737.

40. Pan K. et al. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications // Nature Communications. 2018. V. 9. № 1.

41. Fu W., Wang H., Zhang X. Generating dual-polarized orbital angular momentum radio beams with dual-bowtie cell // AIP Advances. 2019. V. 9. № 11. P. 115004.

42. Daud M. A. et al. Capacitive Loading Effect of Dual Element Reconfigurable Reflectarray Unit Cell // IEEE 14th Malaysia International Conference on Communication (MICC), 2019.

43. Ismail M. Y., Malik H. I., Mokhtar M. H. Performance Improvement of Reflectarray Antennas using Organic Substrate Materials // Journal of Physics: Conf. Ser. 2020. V. 1529. P. 032099.


Review

For citations:


Cherevko A..., Morgachev Y... Analysis of the possibility of using graphene in the design of reflectarray unit cells. The Herald of the Siberian State University of Telecommunications and Information Science. 2021;(3):92-103. (In Russ.) https://doi.org/10.55648/1998-6920-2021-15-3-92-103

Views: 234


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6920 (Print)