Preview

The Herald of the Siberian State University of Telecommunications and Information Science

Advanced search

Method of Secret Messages Embedding into Executable Files

Abstract

This paper is about modification of data hiding method in executable files. The previous embedding method hides a secret message in an unused space of the executable file. Statistical difference exists between a program code and an embedded message, which makes this embedding method vulnerable to statistical attacks. This paper offers to encode a message before embedding so that the probability distribution of secret message bytes and the program code bytes were indistinguishable. The proposed approach improves robustness of data hiding method to statistical attacks.

About the Author

И. I. Nechta
СибГУТИ
Russian Federation


References

1. Thorpe D. Development System with Methodology Providing Information Hiding in Executable Program // US Patent 20060136875 (2006).

2. Pietrek M. Peering Inside the PE: A Tour of the Win32 Portable Executable File Format // URL: http://msdn.microsoft.com/enus/magazine/ cc301805.aspx (дата обращения: 01.11.2010).

3. Нечта И.В. Эффективный метод стегоанализа, базирующийся на коде Хаффмана // Вестник СибГУТИ 2010. № 4. С. 47-53.

4. Anckaert B., De Sutter B., Chanet D., De Bosschere K. Steganography for Executables and Code Transformation Signatures // 7th International Conference on Information Security and Cryptology. 2005. P. 425-439.

5. Ryabko B., Monarev V. Using information theory approach to randomness testing // Journal of Statistical Planning and Inference. 2005. V. 133, № 1. P. 95-110.

6. Ryabko B., Monarev V. Experimental investigation of forecasting methods based on data compression algorithms // Problems of Information Transmission. 2005. V. 41, № 1. P. 65-69.

7. Ryabko B., Astola J. Universal codes as a basis for time series testing // Statistical Methodology. 2006. V. 3. P. 375-397.

8. Ryabko B., Astola J. Universal codes as a basis for nonparametric testing of serial independence for time series // Journal of Statistical Planning and Inference. 2006. V. 136, № 12. P. 4119-4128.

9. Ryabko B. Compression-based methods for nonparametric density estimation, on-line prediction, regression and classification for time series // 2008 IEEE Information Theory Workshop. Porto, Portugal. 2008.


Review

For citations:


I. Nechta  Method of Secret Messages Embedding into Executable Files. The Herald of the Siberian State University of Telecommunications and Information Science. 2011;(2):3-10. (In Russ.)

Views: 99


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6920 (Print)