Research automation of the transport network development
Abstract
A research automation system of forecasting the development of a basic transport network in Russia is considered. A formal model of the transport network allows various types of transport, products, production and consumption, and the task is to minimize the total cost of transportation with respect to a set of linear restrictions. The system provides a user interface for setting and editing all parameters of the transport network. Particular attention is paid to the visual and interactive presentation of simulation results. A holistic perception of the results is achieved by displaying both the input data (mode of transport, throughput, transportation cost) and the modeling results (transported volume and functioning capacity) directly either on the map or on the network plan. The system allows us to display either a selected product or all products together. In practice, it is often required to solve the problem that is inverse to simulation, for example, to find out at what tariffs the volumes of transportation over a certain transportation shoulder will exceed a given value. To do this, it is proposed to use stochastic methods based on the mass solution of the transport problem for a variety of network parameters, such as the capacity of the transport shoulder, the tariff for transportation of cargo or its processing in the transport hub. Clustering methods make it possible to distinguish a relatively small number of “typical” solutions from the entire set of variants. This enables the expert to evaluate both the conditions and the probability of the predicted transport situation. It is also shown that this approach allows us to identify automatically emerging transport corridors and determine the dependence of the volume of transportation on a given shoulder from a specific variable parameter.
About the Authors
M. BulyonkovRussian Federation
T. Nesterenko
Russian Federation
References
1. Бульонков М. А., Карпан В. В., Малов В. Ю., Марусин В. В., Радченко В. В. Концептуальные вопросы построения Модельно-Информационно-Картографической Системы (МИКС) // Моделирование производственных и региональных систем на основе ГИС и информационных технологий: сб. науч. тр. Новосибирск: ИЭОПП СО РАН, 2011. С. 5–28.
2. Бульонков М. А., Филаткина Н. Н. Ситуационный анализ в системе транспортного прогнозирования МИКС-ПРОСТОР // Информационные технологии. 2013. № 8. C. 43–52.
3. Воробьёва В. В., Малов В. Ю., Радченко В. В., Поттер М. В., Серебрянников И. Е. Модель прогнозирования развития опорной транспортной сети // Моделирование производственных и региональных систем на основе ГИС и информационных технологий: сб. науч. тр. Новосибирск: ИЭОПП СО РАН, 2011. С. 68–96.
4. Гранберг А. Г. Оптимизация территориальных пропорций народного хозяйства. М.: Экономика, 1973.
5. Азиатская часть России: моделирование экономического развития в контексте опыта истории / под ред. В. А. Ламина, В. Ю. Малова. Новосибирск: Изд-во СО РАН, 2012. 463 с.
6. Забиняко Г. И. Пакет программ целочисленного линейного программирования // Дискретный анализ и исследование операций. Сер. 2. 1999. Т. 6, № 2. C. 32–41.
7. Google OR-Tools [Электронный ресурс]. URL: https://developers.google.com/optimization/ (дата обращения: 22.03.2019).
8. Гмурман В. Е. Теория вероятностей и математическая статистика: учебное пособие для вузов. 10-е издание, стереотипное. М.: Высшая школа, 2004. 479 с.
Review
For citations:
Bulyonkov M., Nesterenko T. Research automation of the transport network development. The Herald of the Siberian State University of Telecommunications and Information Science. 2019;(3):45-54. (In Russ.)