On the Effect on the Optical Cable Degradation Cycle of the Method of Restoring Communication by Connecting the Cable at the Breakage Point
https://doi.org/10.55648/1998-6920-2024-18-4-87-100
Abstract
During operation, various factors affect the fiber optic cable, which lead to failures. It is generally assumed that the weakest link in an optical cable is fiber, and therefore it is fiber failures that are considered in the article. The warranty period of the fiber, which is set by the manufacturer, is 25 years. Currently, on many sections of the routes where the optical cable is laid, its service life already exceeds the warranty period, and the question arises of replacing it with a new one. As a rule, the service life of an optical cable exceeds the warranty period, because the cable is subject to maintenance and repair during operation. This article proposes a method for calculating the degradation cycle of a fiber-optic cable, which determines the time of its replacement with a new one, taking into account the effect of gradual and sudden failures. The reason for the gradual failures is the aging of the optical cable and the increase in signal attenuation, resulting in a degradation failure (a decrease in the level of the received signal below the critical one), which leads to the replacement of the optical cable. The appearance of a sudden failure caused by outside interference is accompanied by repair work on connecting the cable at the breakage point. The appearance of each new connection leads to an additional attenuation of the signal and a reduction in the degradation cycle time. To detect sudden failures, periodic monitoring of the fiber technical condition is carried out. Within the framework of the proposed methodology, it is assumed that the degradation cycle of an optical cable is divided into degradation states of a certain duration, which, in turn, consist of intervals for checking the condition of the optical fiber in the cable. At the same time, mathematical models using semi-Markov processes are considered, reflecting the state of an optical cable during one testing period, in one degradation state, and on a degradation cycle. Expressions and dependencies have also been obtained showing how sudden and gradual failures affect the reduction of the duration of the opyical cable degradation cycle.
About the Authors
V. P. ShuvalovRussian Federation
Vyacheslav P. Shuvalov - Dr. of Sci. (Engineering), Professor; Professor of the Department of Infocommunication Networks and Systems,
86, Kirov St., Novosibirsk, 630102.
B. P. Zelentsov
Russian Federation
Boris P. Zelentsov - Dr. of Sci. (Engineering), Professor.
I. G. Kvitkova
Russian Federation
Irina G. Kvitkova - Senior Lecturer of the Department of Infocommunication Networks and Systems,
86, Kirov St., Novosibirsk, 630102.
References
1. Kemel’bekov B. Zh., Myshkin V. F., Han V. A. Optical communication cables [Opticheskie kabeli svjazi]. Tomsk, NTL, 2001. 352 p.
2. Shuvalov V. P., Timchenko S. V., Derevyashkin V. M., Kvitkova I. G. K raschetu nadezhnosti opticheskogo volokna pri razlichnyh uslovijah jekspluatacii [To calculate the reliability of optical fiber under various operating conditions]. Nauka i biznes: puti razvitija, 2020, no. 9 (111), pp. 46-48.
3. Shuvalov V. P., Zelencov B. P., Kvitkova I. G. Model' nadjozhnosti volokonno-opticheskoj linii svjazi pri nedostovernom prognozirujushhem kontrole [A realiability model of a fiber-optic communication line with unreliable predictive monitoring]. Vestnik SibGUTI, 2020, № 4, pp. 66-76.
4. Shuvalov V. P., Timchenko S. V., Kvitkova I. G. Metody tehnicheskogo obsluzhivanija i remonta optovolokonnyh linij [Methods of maintenance and repair of fiber optic lines]. Nauka i biznes: puti razvitija, 2023, no. 5 (143), pp. 75-79.
5. Shuvalov V. P., Kvitkova I. G. Tehniko-jekonomicheskij analiz passivnyh opticheskih setej dostupa bol'shogo radiusa dejstvija [Technical and economic analysis of long-reach passive optical access networks]. Sbornik materialov VI Vserossijskoj nauchno-prakticheskoj konferencii «Informacionnye tehnologii i kognitivnaja jelektrosvjaz', Ekaterinburg, 2020, pp. 45-49.
6. Gulina O. M., Zhiganshin A. A., Chepurko V. A. Razrabotka kriterija optimizacii sroka sluzhby jenergobloka [Development of criteria for optimizing the service life of a power unit]. Izvestiya vuzov. Yadernaya Energetika, 2001, no. 2, pp.10-14.
7. Gulina O. M., Merkun A. V., Semishkin V. P. Risk-orientirovannyj podhod v metodologii upravlenija resursom [Risk-based approach in resource management methodology]. Voprosy atomnoj nauki i tehniki. Serija: fizika jadernyh reaktorov, 2021, no. 2, pp. 92-98.
8. Andreev V. A., Burdin V. A., Dashkov M. V., Popov V. B. Analiz opyta tehnicheskoj jekspluatacii linejno-kabel'nyh sooruzhenij transportnoj mnogokanal'noj kommunikacii [Analysis of the experience of technical operation of linear cable structures of multichannel transport communication]. Electrosvyaz, 2021, no. 1, pp. 64-66.
9. A. Yu. Cym, Sroki sluzhby opticheskih kabelej. Analizy. Riski. [The service life of optical cables. Analyzes. Risks]. Cables and Wires, 2020, no. 2 (382), pp. 20-26.
10. Andreev V. A., Burdin V. A., Nizhgorodov A. O. Scenarii prognoza sroka sluzhby opticheskogo volokna v kabel'nyh linijah svjazi [Scenarios for predicting the service life of optical fiber in cable communication lines]. Pervaja milja, 2020, no. 4 (89), pp. 34-43.
11. Shuvalov V. P., Zelentsov B. P., Kvitkova I. G. On the Effect of Sudden Failures and Control Errors of the First Kind on the Degradation Cycle of an Optical Cable. Proc. of IEEE 16th International Conference of Actual Problems of Electronic Instrument Engineering (APEIE-2023), Novosibirsk, 10-12 Nov 2023, pp. 550-555.
12. Andreev V. A., Burdin V. A., Dashkov M. V., Nizhgorodov A. O. Prognoz sroka sluzhby opticheskogo kabelja. Dva podhoda k ocenivaniju aktual'noj prochnosti opticheskih volokon kabel'noj linii [The forecast of the service life of the optical cable. Two approaches to assessing the actual strength of cable line optical fibers]. Foton-express, 2021, no. 6 (174), pp. 220-221.
13. Burdin A. V., Burdin V. A., Dashkov M. V., Nizhgorodov A. O. Kontrol' prochnosti opticheskih volokon v zadachah prognoza resursa opticheskih kabelej na VOLS [Control of the strength of optical fibers in the tasks of forecasting the resource of optical cables on FOCL]. Materialy VIII Molodezhnoj mezhdunarodnoj nauchno-tehnicheskoj konferencii molodyh uchenyh, aspirantov studentov «Prikladnaja jelektrodinamika, fotonika i zhivye sistemy -2021», Kazan, 2021, pp. 11-15.
14. Andreev V. A., Burdin A. V., Burdin V. A., Dashkov M. V. Metod nerazrushajushhego kontrolja prochnosti kvarcevogo opticheskogo volokna [The method of non-destructive testing of the strength of quartz optical fiber]. Komp'juternaja optika, 2022, vol. 46, no. 2, pp. 224-231.
15. Shuvalov V., Ionikova E., Karpov K. Method for Determining the Number of States of the Markov Model of Damage Accumulation in Predicting the Technical Condition of a Fiber-Optic Cable. Proc. of international Conference on Applied Innovation in IT, Koethen, Germany, 7 March 2021, vol. 9, iss. 1 , pp. 13-19.
16. Shuvalov V. P., Zelencov B. P., Kvitkova I. G. Model' nadjozhnosti optovolokna v uslovijah degradacii [A model of optical fiber reliability under degradation conditions]. Vestnik SibGUTI, 2022, no. 3 (59), pp. 56-61.
17. Bogachkov I., Gorlov N., Monastyrskaya T., Medvedeva N. Monitoring in the Physical Channels of Optical Access Networks. Proc. of International Conference on Applied Innovation in IT (ICAIIT-2023), Koethen, Germany, 9 March 2023, vol. 11, iss. 1, pp. 49–53.
18. Gorlov N. I. Poslednie issledovanija i razrabotki v oblasti monitoringa opticheskogo volokna v sistemah svjazi [Recent research and development in the field of optical fiber monitoring in communication systems]. Infokommunikacionnye tehnologii: aktual'nye voprosy cifrovoj jekonomiki. Sbornik nauchnyh trudov III Mezhdunarodnoj nauchno-prakticheskoj konferencii, Ekaterinburg, 2023, pp. 35-39.
19. Gorlov N. I. Optical reflectometry based on the principle of separation of the difference frequency of the brillouin scattering spectrum. Proc. of International Scientific-Practical Conference on Information Innovative Technologies, Prague, 25-29 April 2022, pp. 280-286.
20. Gorlov N. I. Monitoring fizicheskoj sredy opticheskoj seti dostupa [Monitoring of the physical environment of the optical access network]. Aktual'nye problemy infotelekommunikacij v nauke i obrazovanii (APINO 2023). Sbornik nauchnyh statej. XII Mezhdunarodnaja nauchno-tehnicheskaja i nauchno-metodicheskaja konferencija, Saint-Petersburg, 2023, pp. 360-364.
21. Gorlov N. I. Monitoring podvodnyh volokonno-opticheskih linij svjazi [Monitoring of underwater fiber-optic communication lines]. Informacionnye tehnologii i kognitivnaja jelektrosvjaz'. Sbornik nauchnyh trudov IX Vserossijskoj nauchno-prakticheskoj konferencii, Ekaterinburg, 2023, pp. 5457.
22. Gorlov N. I. Metody monitoringa fizicheskoj sredy passivnyh opticheskih setej [Methods of monitoring the physical environment of passive optical networks]. Infokommunikacionnye tehnologii: aktual'nye voprosy cifrovoj jekonomiki. Sbornik nauchnyh trudov III Mezhdunarodnoj nauchno-prakticheskoj konferencii, Ekaterinburg, 2023, pp. 46-49.
23. Shuvalov V. P., Karpov K. A., Ionikova E. P. Metodika opredelenija verojatnosti otkaza opticheskogo volokna ot tekushhego vremeni jekspluatacii [A method for determining the probability of failure of an optical fiber on the current operating time] Vestnik SibGUTI, 2021, no. 2, pp. 60-68.
24. Efanov V. I. Design, construction and operation of FOCL [Proektirovanie, stroitel'stvo i jekspluatacija VOLS]. Tomsk, TUSUR. 2012. 102 p.
Review
For citations:
Shuvalov V.P., Zelentsov B.P., Kvitkova I.G. On the Effect on the Optical Cable Degradation Cycle of the Method of Restoring Communication by Connecting the Cable at the Breakage Point. The Herald of the Siberian State University of Telecommunications and Information Science. 2024;18(4):87-100. (In Russ.) https://doi.org/10.55648/1998-6920-2024-18-4-87-100