Development of a new mathematical method for modeling the movement of a micropolar lubricant in the working gap of a modified bearing structure
https://doi.org/10.55648/1998-6920-2025-19-1-54-64
Abstract
The liquid lubricant moving in the gap inevitably contains atmospheric gases, which significantly affect such an operational property of the lubricant as compressibility. This study includes the development and analysis of a mathematical model of a micro-polar lubricant in a bearing with composite fluoroplastic coatings and a support profile adapted to specific friction conditions. Based on the equation of motion of the liquid lubricant under study, the continuity equation and the equation of state, new mathematical models are obtained that additionally take into account the compressibility of the lubricant. The possibilities of applying
in practice the mathematical models of the modified radial bearing structure obtained by the authors have been significantly expanded, taking into account new factors that make it possible to evaluate the performance characteristics of radial bearings. The modified design of the radial
sliding bearing made it possible to clarify, taking into account an additional factor – the compressibility of the lubricant, the bearing capacity by 8–10 %, and the coefficient of friction by 7–9 % in the range of the studied modes
About the Authors
Murman Alexandrovich MukutadzeRussian Federation
Elena Grigorievna Chub
Russian Federation
Ekaterina Alexandrovna Bolgova
Russian Federation
Natalya Sergeevna Zadorozhnaya
Russian Federation
References
1. Isaacs N. S. Liquid phase high pressure chemistry. New York – Chichester Brisbane – Toronto,
2. Wiley-Interscience, 1981. 414 p.
3. le Noble W. H. Organic high pressure chemistry. Amsterdam – Oxford – New York – Tokyo,
4. Elsevier, 1988. 489 p.
5. Marcus Y., Hefter G. T. The compressibility of liquids at ambient temperature and pressure. Journal
6. of Molecular Liquids. 1997, vol. 73–74, pp. 61–74.
7. Kiselev V. D., Kashaeva E. A., Konovalov A. I. Pressure effect on the rate and equilibrium constant
8. of the Diels-Alder reaction 9-chloroanthracene with tetracyanoethylene. Tetrahedron, 1999, vol. 55.
9. pp. 1153–1162.
10. Kiselev V. D., Bolotov A. V., Kashaeva E. A., Konovalov A. I. Opredelenie izotermicheskoj
11. szhimaemosti rastvoritelya po izmeneniyu opticheskoj plot-nosti rastvora krasitelya pod davleniem
12. [Determination of the isothermal compressibility of a solvent by changing the optical density of a
13. dye solution under pressure]. Izvestiya RAN. Seriya himicheskaya, 2006, no. 12, pp. 2049–2052.
14. Riddick J. A. Organic solvents. New York: John Wiley & Sons, 1986. 1325 p.
15. Cibulka I., Zikova M. Liquid densities at elevated pressures of l-alkanols from C1 to C10: a critical
16. evaluation of experimental data. Journal of Chemical & Engineering Data, 1994, vol. 39, pp. 876–
17.
18. Разработка нового математического метода моделирования микрополярного движения... 63
19. Cibulka I., Hnedkovsky L. Liquid densities at elevated pressures of n-alkanes from C5 to C16: a
20. critical evaluation of experimental data. Journal of Chemical & Engineering Data, 1996. vol. 41,
21. pp. 657–668.
22. Cibulka I., Hnedkovsky L., Takagi T. P-d-T data of liquids: summarization and evaluation. 3. Ethers,
23. ketones, aldehydes, carboxylic acids, and esters. Journal of Chemical & Engineering Data, 1997, vol.
24. 42, pp. 2–26.
25. Cibulka I., Hnedkovsky L., Takagi T. P-d-T data of liquids: summarization and evaluation. 4. Higher
26. l-alkanols (C11, C12, C14, C16), secondary, tertiary, and branched alkanols, cycloalkanoles,
27. alkanediols, alkanetriols. ether alkanols, and aromatic hydroxyl derivatives. Journal of Chemical &
28. Engineering Data, 1997, vol. 42, pp. 415–433.
29. Cibulka I., Takagi T. P-d-T data of liquids: summarization and evaluation. 5. Aromatic
30. hydrocarbons. Journal of Chemical & Engineering Data, 1999, vol. 44, pp. 411–429.
31. Cibulka I., Takagi T. P-d-T data of liquids: summarization and evaluation. 6. Nonaromatic
32. hydrocarbons (Cn, n ≥ 5) except n-alkanes C5 to C16. Journal of Chemical & Engineering Data,
33. 1999, vol. 44, pp. 1105–1128.
34. Cibulka I., Takagi T., Ruzicka K. P-d-T data of liquids: summarization and evaluation. 7. Selected
35. halogenated hydrocarbons. Journal of Chemical & Engineering Data, 2001, vol. 46, pp. 2–28.
36. Cibulka I., Takagi T. P-d-T data of liquids: summarization and evaluation. 8. Miscellaneous
37. compounds. Journal of Chemical & Engineering Data, 2002, vol. 47, pp. 1037–1070.
38. Tsiklis D. S. Tekhnika fiziko-himicheskih issledovanij pri vysokih i sverhvysokih davleniyah
39. [Technique of physico-chemical research at high and ultrahigh pressures]. Moscow, Chemistry,
40. 430 p.
41. Bridgman P. V. Fizika vysokih davlenij [Physics of high pressures]. Moscow, Ob"edinyonnoe
42. nauchno-tekhnicheskoe izdatel'stvo NKTP SSSR, 1935. 402 p.
43. Razumikhin V. N. Gidrostaticheskij metod opredeleniya plotnosti zhidkostej pri davlenii do 5000
44. kgs/sm2 [Hydrostatic method for determining the density of liquids at pressures up to 5000
45. kgf/cm2]. Trudy institutov Komiteta standartov mer i izmeritel'nyh priborov, 1960, vol. 46(106), pp.
46. 96–106.
47. Hayward A. T. J. How to measure the isothermal compressibility of liquids accurately. Journal of
48. Physics D: Applied Physics, 1971, vol. 4, pp. 938–950.
49. Hayward A. T. J. Compressibility equations for liquids: A comparative study. British Journal of
50. Applied Physics, 1967, vol. 18, pp. 965–977.
51. Kiselev V. D., Bolotov A.V., Satonin A. P., Kashaeva E. A., Konovalov A. I. Szhimaemost' zhidkosti i
52. eyo vnutrennee davlenie [Compressibility of a liquid and its internal pressure]. Uchenye Zapiski
53. Kazanskogo Universiteta, 2008, vol. 150, no. 3. pp. 76–90.
54. Vasilenko V. V., Kirishchieva V. I., Mukutadze M. A., Shvedova V. E. Issledovanie iznosostojkosti
55. podshipnika skol'zheniya s polimernym pokrytiem opornogo kol'ca, imeyushchego kanavku
56. [Investigation of the wear resistance of a sliding bearing with a polymer coating of a support ring
57. having a groove]. Advanced Engineering Research (Rostov-on-Don), 2022, vol. 22, no. 4. pp. 365–
58.
59. Akhverdiev K. S., Lagunova E. O., Vasilenko V. V. Raschetnaya model' radial'nogo podshipnika,
60. smazyvaemogo rasplavom, s uchetom zavisimosti vyazkosti ot davleniya [Calculation model of a
61. radial bearing lubricated by melt, taking into account the dependence of viscosity on pressure].
62. Vestnik Donskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2017, no. 17(3), pp. 27–37
Supplementary files
Review
For citations:
Mukutadze M.A., Chub E.G., Bolgova E.A., Zadorozhnaya N.S. Development of a new mathematical method for modeling the movement of a micropolar lubricant in the working gap of a modified bearing structure. The Herald of the Siberian State University of Telecommunications and Information Science. 2025;19(1):54-64. (In Russ.) https://doi.org/10.55648/1998-6920-2025-19-1-54-64