Preview

Вестник СибГУТИ

Расширенный поиск

Применения фуллеренов в органических фотодетекторах

https://doi.org/10.55648/1998-6920-2025-19-2-25-39

Аннотация

Фуллерен в настоящее время привлекает значительное внимание
исследователей, поскольку имеет множество применений в различных областях.
Молекулы фуллерена обладают уникальными структурными, электронными и
оптическими свойствами, которые могут быть использованы при создании
оптоэлектронных устройств. В настоящее время в научной литературе активно
обсуждаются вопросы использования фуллеренов в фотодетекторах. В связи с этим
данный обзор посвящен органическим фотодетекторам, разработанным с использованием
фуллереновых наноструктур. Рассмотрены последние достижения в области
органических фотодетекторов на основе фуллеренов и их применение в системах
беспроводной оптической связи в видимом диапазоне длин волн.

Об авторах

Дмитрий Вячеславович Кусайкин
Уральский технический институт связи и информатики (филиал) Сибирского государственного университета телекоммуникаций и информатики
Россия
к.т.н., доцент кафедры многоканальной электрической связи, Уральский техническийинститут связи и информатики (филиал) Сибирского государственного университетателекоммуникаций и информатики


Валерий Таукенович Куанышев
Уральский технический институт связи и информатики (филиал) Сибирского государственного университета телекоммуникаций и информатики
Россия
к.ф.-м.н., заведующий кафедройвысшей математики и физики, Уральскийтехнический институт связи и информатики (филиал) Сибирского государственногоуниверситета телекоммуникаций и информатики


Николай Михайлович Барбин
Уральский технический институт связи и информатики (филиал) Сибирского государственного университета телекоммуникаций и информатики
Россия
д.т.н., профессор кафедры высшей математики и физики, Уральский техническийинститут связи и информатики (филиал) Сибирского государственного университетателекоммуникаций и информатики


Список литературы

1. Choi W., Cho M. Y., Konar A., Lee J. H., Cha G. B., Hong S. C., S. Phototransistors: High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared // Advanced Materials. 2012. V. 24, no. 43. P. 5902-5902.

2. Martinez J., Osorio-Roman I., Gualdron-Reyes A.F. Progress of Organic/Inorganic Luminescent Materials for Optical Wireless Communication Systems. Photonics. 2023. V.10, no. 6. P. 659-676.

3. Tuktarov A. R., Salikhov R. B., Khuzin A. A., Popodko N. R., Safargalin I. N., Mullagaliev I. N., Dzhemilev U. M. Photocontrolled organic field effect transistors based on the fullerene C60 and spiropyran hybrid molecule, RSC Adv. 2019. V. 9, no. 13, P. 7505-7508.

4. Ollearo R., Ma, X., Akkerman H. B., Fattori M., Dyson M. J., van Breemen A. J. Vitality surveillance at distance using thin-film tandem-like narrowband near-infrared photodiodes with light-enhanced responsivity // Science Advances. 2023. V. 9, no. 7, P.10.

5. Clark, J., Lanzani, G. Organic photonics for communications // Nature Photonics. 2010. Vol. 4, no. 7. P. 438–446.

6. Sachdeva S., Singh D., Surya S. K. Study of Electrical Properties of Fullerene Based All-Small-Molecule Organic Devices with and Without Cathode Buffer Layers for Photovoltaic Application // Physica B: Condensed Matter. 2024. V. 695. P. 416552.

7. Gong X., Tong M., Xia Y., Cai W., Moon, J. S., Cao, Y. Heeger, A. J. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm // Science. 2009. V. 325, no. 5948. P. 1665–1667.

8. Guo F., Xiao Z., Huang J. Fullerene Photodetectors with a Linear Dynamic Range of 90 dB Enabled by a Cross-Linkable Buffer Layer // Advanced Optical Materials. 2013. V1, no. 4. P. 289–294.

9. Yao, Y., Chen, Y., Wang, H., Samorì, P. Organic photodetectors based on supramolecular nanostructures // SmartMat. 2020. V. 1, no. 1. P. 30.

10. Liu K, Gao S, Zheng Z. Spatially Confined Growth of Fullerene to Super Long Crystalline Fibers in Supramolecular Gels for High-Performance Photodetector // Adv. Mater. 2019. V.31, no. 18. P.1-10.

11. Zheng S., Xiong X., Zheng Z., Xu T., Zhang L., Zhai T., Lu X. Solution-grown large-area C60 single-crystal arrays as organic photodetectors // Carbon. 2018. V .126. P. 299–304.

12. Zhao X., Liu T., Liu H., Wang S., Li X., Zhang Y. Dennis T. J. S. Organic Single-Crystalline p–n Heterojunctions for High-Performance Ambipolar Field-Effect Transistors and Broadband Photodetectors // ACS Applied Materials & Interfaces. 2018. V.10, no. 49. P. 42715-42722.

13. Du L., Luo X., Zhao F., Lv W., Zhang J., Peng Y., Wang Y. Toward facile broadband high photoresponse of fullerene based phototransistor from the ultraviolet to the near-infrared region // Carbon. 2016. V. 96. P. 685–694.

14. Su M., Hu Y., Yu A., Peng Z., Long W., Gao S., Peng P., Su B., Li F.-F. Molecular engineering for high-performance fullerene broadband photodetectors // Nanoscale Advances. 2021. V. 3. P. 1096-1105.

15. Zheng L., Zhu T., Xu W., Liu L., Zheng J., Gong X., Wudl F. Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5 μm by a low bandgap donor–acceptor conjugated copolymer // Journal of Materials Chemistry C. 2018. V. 6. P. 3634–3641.

16. Siegmund B., Mischok A., Benduhn J., Zeika, O., Ullbrich S., Nehm F. Vandewal K. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption // Nat Commun. 2017. V. 8. P.6.

17. Arredondo B., Romero B., Pena J.M. S., Fernandez-Pacheco A., Alonso E., Vergaz R., De Dios C. Visible light communication system using an organic bulk heterojunction photodetector // Sensors. 2013. V. 13, no. 9. P. 12266–12276.

18. Ghassemlooy Z., Haigh P.A., Arca F., Tedde S.F., Hayden O., Papakonstantinou I., Rajbhandari S. Visible light communications: 3.75 Mbits/s data rate with a 160 kHz bandwidth organic photodetector and artificial neural network equalization // Photon. Res. 2013. V.1, no. 2. P.65-68.

19. Cho S., Heo C.J., Lim Y., Oh S., Minami D., Yu M., Chun H., Yun S., Seo H., Fang F. Small Molecule Based Organic Photo Signal Receiver for High-Speed Optical Wireless Communications // Adv. Sci. 2022. V. 9. P.1-10.

20. Ohmori Y., Hamasaki T., Kajii H., Morimune T. Organic photo sensors operating at high speed utilizing poly(9,9-dioctylfluorene) derivative and fullerene derivative fabricated by solution process // Optical Sensors. 2009. V. 7356. P.8.

21. Tsai W.W., Chao Y.C., Chen E.C., Zan H.W. Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector // Applied Physics Letters. 2009. V.95, no.21. P. 3.

22. Zheng J., Yang D., Guo D., Yang L., Li J., Ma D. An Ultrafast Organic Photodetector with Low Dark Current for Optical Communication Systems // ACS Photonics. 2023. V.10, no. 5. P. 1382–1388.

23. Wang Y., Kublitski J., Xing S. Narrowband organic photodetectors —Towards miniaturized, spectroscopic sensing // Mater Horiz. 2022. V. P. 220–251.

24. Lan Z., Lau Y.S., Wang Y., Xiao Z., Ding L., Luo D., Zhu F. Filter-free band-selective organic photodetectors // Adv. Opt. Mater. 2020. V. 8, no. 24. P. 12.

25. Xing S., Wang X., Guo E., Kleemann H., Leo K. Organic thin-film red-light photodiodes with tunable spectral response via selective exciton activation // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 13061–13067.

26. Zhang S., Tsonev D., Videv S., Ghosh S., Turnbull G.A. Organic solar cells as high-speed data detectors for visible light communication // Optica. 2015. V.2. P. 607–610.

27. Vega-Colado C., Arredondo B., Torres J., Lopez-Fraguas E., Vergaz R. An All-Organic Flexible Visible Light Communication System // Sensors. 2018. V. 18,no. 9. P. 12.

28. Zhou Z., Liao G., Song X. Significant Detectivity Enhancement of Broad Spectral Organic–Inorganic Hybrid Photodiodes by C60 Film as Hole-Blocking Layer // Nanoscale Res Lett. 2022. V. 17, no. 19. P. 9.

29. Shan T., Hou X., Yin X. Organic photodiodes: device engineering and applications // Front. Optoelectron. 2022. V. 15, no. 49. P.33.

30. Manousiadis P.P., Yoshida K., Turnbull G.A. Organic semiconductors for visible light communications // Phil. Trans. R. Soc. 2020. V. 378. P. 18.

31. Yang, D., Ma, D. 1,1-Bis [(di-4-tolylamino) phenyl] cyclohexane for fast response organic photodetectors with high external efficiency and low leakage current // Journal of Materials Chemistry C. 2013. V.1, no.10. P.2054-2060.

32. Su Z., Hou F., Wang X., Gao Y., Jin F., Zhang G., Li W. High-Performance Organic Small-Molecule Panchromatic Photodetectors // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 2529-2534.

33. Zhang H., Jenatsch S., De Jonghe J., Nuesch F., Steim R., Veron A. C., Hany R. Transparent Organic Photodetector using a Near-Infrared Absorbing Cyanine Dye // Sci. Rep. 2015. V.5, P.6.

34. Lee H., Nam S., Kwon H., Lee S. Solution-processable all-small molecular bulk heterojunction films for stable organic photodetectors: near UV and visible light sensing // Journal of Materials Chemistry C. 2015. V. 3, no. 7. P.1513.

35. Wu Z., Yao W., London A. E., Azoulay J. D. Temperature-dependent detectivity of near-infrared organic bulk heterojunction photodiodes // ACS Appl. Mater. Interfaces. 2017. V.9. P.1654–1660.

36. Hu X., Dong Y., Huang F., Gong X., Cao Y. Solution-processed high-detectivity near-infrared polymer photodetectors fabricated by a novel low-bandgap semiconducting polymer // Journal of Phys Chem C. 2013. V. 117. P. 6537-6543.

37. London A.E., Huang L., Zhang B.A. Donor–acceptor polymers with tunable infrared photoresponse // Polym Chem. 2017. V. 8. P. 2922-2930.

38. Han J., Yang D., Ma D., Qiao W., Wang Z.Y. Low-bandgap polymers for high-performance photodiodes with maximal EQE near 1200 nm and broad spectral response from 300 to 1700 nm // Adv Opt Mater. 2018. V. 6. P. 7.

39. Wang X., Li H., Su Z. Efficient organic near-infrared photodetectors based on lead phthalocyanine/C60 heterojunction // Org Electron. 2014. V.15. P. 2367-2371.

40. Choi M., Chae S., Kim H., Kim J. Control of crystallinity in PbPc:C60 blend film and application for inverted near-infrared organic photodetector // ACS Appl Mater Interfaces. 2018. V.10. P. 25614-25620.

41. Zimmerman J.D., Yu E.K., Diev V.V. Use of additives in porphyrin-tape/C60 near-infrared photodetectors // Org Electron. 2011. V. 12. P. 869-873.

42. Li L., Huang Y., Peng J., Cao Y., Peng X. Highly responsive organic near-infrared photodetectors based on a porphyrin small molecule // J Mater Chem C. 2014. V. 2. P. 4.

43. Liu H., Li J., Xia L., Bai Y., Hu S., Liu J. Perfect complementary in absorption spectra with fullerene, nonfullerene acceptors and medium band gap donor for high-performance ternary polymer solar cells // ACS Appl Mater Interfaces. 2018. V. 10. P. 29831–29839.

44. Trippodo E., Campisciano V., Feng L-W., Chen Y., Huang W. Air-stable ternary organic solar cells achieved by using fullerene additives in non-fullerene acceptor-polymer donor blends // Journal of Materials Chemistry C. 2023. V. 11, no. 24. P. 8074–8083.

45. Короткова Т. Н., Коротков Л. Н., Панкова М. А. Диэлектрические свойства фуллеритов C60 – C70 и возможности применения материалов в радиоэлектронных компонентах // Вестник Воронежского института МВД России. 2021. № 1. C.169-174.

46. Долженко Д. И., Бородзюля В. Ф., Захарова И. Б., Сударь Н. Т. Влияние тока, ограниченного объемным зарядом, на диэлектрические свойства поликристаллических пленок фуллерита C60 // Журнал технической физики. – 2021. – Т. 91. – №. 1. – С. 58-63.


Рецензия

Для цитирования:


Кусайкин Д.В., Куанышев В.Т., Барбин Н.М. Применения фуллеренов в органических фотодетекторах. Вестник СибГУТИ. 2025;19(2):25-39. https://doi.org/10.55648/1998-6920-2025-19-2-25-39

For citation:


Kusaykin D.V., Kuanyshev V.T., Barbin N.M. Applications of fullerenes in organic photodetectors. The Herald of the Siberian State University of Telecommunications and Information Science. 2025;19(2):25-39. (In Russ.) https://doi.org/10.55648/1998-6920-2025-19-2-25-39

Просмотров: 51


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-6920 (Print)