Preview

The Herald of the Siberian State University of Telecommunications and Information Science

Advanced search

A comprehensive technique for profiling geophysical characteristics along the radio waves propagation path in the very low frequency band

https://doi.org/10.55648/1998-6920-2025-19-3-61-75

Abstract

The subject of the study. Results of the electromagnetic field strength forecasting in the very low frequency band highly depends on the accuracy of the input data, such as the underlying surface electrical characteristics, the characteristics of the geomagnetic field and the ionosphere. Currently, modern geophysical models provide sufficiently high accuracy of the initial data for the field strength forecasting, but their implementation is complicated by the disparity of data presentation formats and requirement for software implementations of forecasting methods refinement. The study proposes a comprehensive methodology for using modern geophysical models for profiling geophysical characteristics on the very low frequency band radio path.

Materials and methods. The complex technique was obtained by combining a number of partial techniques and implemented as a program in the Matlab programming language. The initial data are taken from digital global maps of the underlying surface electrical characteristics, geomagnetic models, such as International Geomagnetic Reference Field or World Magnetic Model, and the International Reference Ionosphere model. The technique is based on a cyclic access to the geophysical models which is controlled by the number of parameters such as the Sun zenith angle, the underlying surface conductivity, the geomagnetic azimuth of the radio path and the geomagnetic field amplitude. When the obtained value of one of the control parameters goes beyond the designated interval, the characteristics of the radio path segment are added to the initial data array.

Results. Approved software package for the field strength forecasting has shown that the replacement of the initial data models introduces visible periodic disturbances into the forecast, that take a form of the field strength level pulsation over a distance. The effect was quantified with the corresponding harmonics levels in the periodogram. The analysis showed that periodic disturbances are the result of a sharp decrease in electron density in the International Reference Ionosphere model, therefore, a hybrid ionospheric model has been introduced into the complex segmentation technique, that combines the bi-exponential and International Reference Ionosphere models for a smoother decrease in electron concentration at low altitudes.

Discussion and conclusions. Field strength forecasting with the complex technique revealed that the introduction of a hybrid model gives the least periodic disturbances values of the field strength. However, the use of a hybrid ionosphere model is complicated by the need for a rational selection of the point where takes place the transition from one exponential function to another, therefore, the use of a bi-exponential model requires additional research. Moreover, the further direction of the study is to assess the accuracy of the developed methodology forecasting based on practical measurement data.

About the Author

Alexey Alekseevich Tipikin
Military Educational and Scientific Center of the Navy "Naval Academy"
Russian Federation
Head of Department, Research Institute of Naval Systems, SPIN 2114-7517, Scopus ID 58752151700


References

1. Li G., Wang Y., Liu C. Analysis of VLF Radio Wave Propagation Characteristics and Its Influence on Underwater Platform Communication. IEEE 3rd International Conference on Communications and In-formation Systems (ICCIS), 2018, pp. 83-87.

2. Madhavilatha T., Naidu P., Devi M. Day to Night Shift in Reflection Height of VLF Radio Waves De-rived from IRI Model Electron Density Models. Studia Geophysica et Geodaetica, 2023, vol. 67, pp. 183-194. https://doi.org/10.1007/s11200-022-0959-6.

3. Reinisch B., Song P., Galkin I., Stelmash S., Roche K., Khmyrov G., Bibl K., Kozlov A., McEachen M., Paznukhov V. The VLF Transmitter, Narrowband Receiver, and Tuner Investigation on the DSX Spacecraft. Journal of Geophysical Research: Space Physics, 2023, vol. 128, no. 7, pp. 1-33. https://doi.org/10.1029/2022JA030435.

4. Nina A. Analysis of VLF Signal Noise Changes in the Time Domain and Excitations/Attenuations of Short-Period Waves in the Frequency Domain as Potential Earthquake Precursors. Remote Sensing, 2024, vol. 16, no. 2:397. https://doi.org/10.3390/rs16020397.

5. Tipikin A. A. Metodika rascheta napriazhennosti polia ionosfernoi volny v diapazone ochen' nizkikh chastot na osnove skachkovogo metoda [The Technique of Calculating the Field Strength of the Iono-spheric Wave in the Very Low Frequency Band Based on the Wavehop Method]. Informatsionno-upravliaiushchie sistemy, 2023, no. 5, pp. 12-21. https://doi.org/10.31799/1684-8853-2023-5-12-21.

6. Tipikin A. A., Pakhotin V. A. Metodika rascheta summarnogo polia prostranstvennoi i zemnoi voln diapazona ochen' nizkikh chastot [The Technique of Сalculating the Total Field of Spatial and Ground Waves in the Very Low Frequency Band]. Systems of Control, Communication and Security, 2024, no. 3, pp. 1-21. https://doi.org/10.24412/2410-9916-2024-3-001-021.

7. Kuwagaki T. Sheaf Quantization from Exact WKB Analysis. Journal für die Reine und Angewandte Mathematik, 2024. https://doi.org/10.1515/crelle-2024-0041.

8. Suzuki T., Taniguchi E., Iwamura K. Exact WKB analysis for adiabatic discrete-level Hamiltonians. Physical Review A, 2024, vol. 109, no. 2. https://doi.org/10.1103/PhysRevA.109.022225.

9. Gasdia F., Marshall R. A. A New Longwave Mode Propagator for the Earth-Ionosphere Waveguide. IEEE Transactions on Antennas and Propagation, 2021, vol. 69, no. 12, pp. 8675-8688. https://doi.org/10.1109/TAP.2021.3083753.

10. Xu W., Gu X., Ni B., Wang S., Yang Z., Cheng W., Hu Z.-J., He F., Li B., Chen X., Liu J.‐J., Hu H.-Q. Measurements and modeling of the responses of VLF transmitter signals to X class solar flares at the Great Wall Station in Antarctica. Space Weather, vol. 21, no. 4. https://doi.org/10.1029/2022SW003249.

11. Tipikin A. A. Metodika formirovaniia global'nykh tsifrovykh kart elektricheskikh kharakteristik pod-stilaiushchei poverkhnosti v diapazone ochen' nizkikh chastot [Method of Obtaining Global Digital Maps of Underlying Surface Electric Characteristics in the Very Low Frequency Band]. Computing, Telecommunication and Control, 2022, vol. 15, no. 1, pp. 7-18. https://doi.org/10.18721/JCSTCS.15101.

12. Tipikin A. A., Potapov D. S., Parafeinik D. V. Rezul'taty issledovanii po formirovaniiu tsifrovykh kar-tograficheskikh dannykh elektricheskikh kharakteristik podstilaiushchei poverkhnosti v diapazone SDV [The research results on the Obtaining of Digital Cartographic Data of the Electrical Characteristics of the Underlying Surface in the VLF Band]. Morskoi vestnik, 2023, no. S1(16), pp. 27-29.

13. Fron A., Galkin I., Krankowski A., Bilitza D., Hernandez-Pajares M., Reinisch B., Li Z., Kotulak K., Zakharenkova I., Cherniak Iu., Dollase D. R., Wang N., Flisek P., Garcia Rigo A. Towards Cooperative Global Mapping of the Ionosphere: Fusion Feasibility for IGS and IRI with Global Climate VTEC Maps. Remote Sensing, 2020, no. 12(21), pp. 3531. https://doi.org/10.3390/rs12213531.

14. Galkin I., Fron A., Reinisch B., Hernandez-Pajares M., Krankowski A., Nava B., Bilitza D., Kotulak K., Flisek P., Li Z., Wang N., Dollase D. R., Garcia Rigo A., Batista I. Global Monitoring of Ionospheric Weather by GIRO and GNSS Data Fusion. Atmosphere, 2022, no. 13, pp. 371. https://doi.org/10.3390/atmos13030371.

15. Pignalberi A., Bilitza D., Coïsson P., Haralambous H., Nava B., Pezzopane M., Prol F., Smirnov A., Themens D., Xiong C. Validation of the IRI-2020 Topside Ionosphere Options through In-Situ Electron Density Observations by Low-Earth-Orbit Satellites. Advances in Space Research, 2024. vol. 21, no. 4:e2022SW003249. https://doi.org/10.1016/j.asr.2024.05.056.

16. Brown W., Beggan C., Cox G., Macmillan S. The BGS Candidate Models for IGRF-13 with a Retro-spective Analysis of IGRF-12 Secular Variation Forecasts. Earth, Planets and Space, 2021, vol. 73:42. https://doi.org/10.1186/s40623-020-01301-3.

17. Chulliat A., Brown W., Alken P., Beggan C., Nair M., Cox G., Woods A., Macmillan S., Meyer B., Paniccia M. The US/UK World Magnetic Model for 2020–2025: Technical Report. National Ocean and Atmosphere Administration, 2020. https://doi.org/10.25923/ytk1-yx35.

18. Tipikin A. A. Metodika ispol'zovaniia modelei geomagnitnogo polia Zemli pri prognozirovanii energet-icheskikh parametrov radiotrass diapazona ochen' nizkikh chastot [Forecasting Radio Path Energy Pa-rameters in the Very Low Frequency Band Using Earth's Geomagnetic Field Models]. Vestnik of Volga State University of Technology. Ser.: Radio Engineering and Infocommunication Systems, 2024, no. 1(61), pp. 23-34. https://doi.org/10.25686/2306-2819.2024.1.23.

19. Tipikin A. A. Metodika ispol'zovaniia mezhdunarodnoi standartnoi modeli ionosfery pri prognozirovanii energeticheskikh parametrov radiolinii diapazona ochen' nizkikh chastot [The Technique of Radio Path Energy Parameters Forecasting in the Very Low Frequency Band Using International Standard Iono-sphere Model]. Ekonomika i kachestvo sistem sviazi, 2024, no. 3(33), pp. 78-86.

20. ITU-R Recommendation P.684-7. Prediction of Field Strength at Frequencies Below about 150 kHz. Ge-neva, ITU, 2016. 43 p.

21. Huang W., Liu B. Solar Position Algorithm Based on the Kepler Equation. Applied Sciences, 2022, vol. 12, no. 11:5449. https://doi.org/10.3390/app12115449.

22. Friedrich M. Handbook of Lower Ionosphere. Graz: Verlag der Technischen Universität Graz, 2016. 168 p.

23. Tipikin A.A., Pakhotin V.A., Potapov D.S. Metodika avtomaticheskogo profilirovaniia elektricheskikh kharakteristik podstilaiushchei poverkhnosti na trasse rasprostraneniia radiovoln diapazona ochen' nizkikh chastot [Technique for Automatic Profiling of Underlying Surface Electric Parameters on the Very Low Frequencies Radio Path]. Proceedings of Telecommunication Universities, 2024, vol. 10(3), pp. 66‒73. https://doi.org/10.31854/1813-324X-2024-10-3-66-73.

24. SPAWAR LWPC Longwave Propagation Code v. 2.1, available at: https://github.com/space-physics/LWPC. (accessed: 05.10.2023).

25. Makarov V., Lambert S., Cigan P., DiLullo C., Gordon D. Robust 1-Norm Periodograms for Analysis of Noisy Non-Gaussian Time Series with Irregular Cadences: Application to VLBI Astrometry of Quasars. Publications of the Astronomical Society of the Pacific, 2024, vol. 136:054503. https://doi.org/10.1088/1538-3873/ad4b9f.

26. Das S., Rao S., Yang J. Spectral Methods for Small Sample Time Series: A Complete Periodogram Ap-proach. Journal of Time Series Analysis, 2021, vol. 42, no. 2. https://doi.org/10.1111/jtsa.12584.

27. Xu W., Marshall R., Kero A., Turunen E., Drob D., Sojka J., Rice D. VLF Measurements and Modeling of the D-Region Response to the 2017 Total Solar Eclipse. IEEE Transactions on Geoscience and Re-mote Sensing, 2019, pp. 1-10. https://doi.org/10.1109/TGRS.2019.2914920.

28. Xu W., Marshall R., Bortnik J., Bonnell J. An Electron Density Model of the D‐ and E‐Region Iono-sphere for Transionospheric VLF Propagation. Journal of Geophysical Research: Space Physics, 2021, vol. 126, no. 7:e2021JA029288. https://doi.org/10.1029/2021JA029288.


Supplementary files

1. Эксп. заключение 01
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾
2. Эксп. заключение 02
Subject
Type Исследовательские инструменты
View (992KB)    
Indexing metadata ▾

Review

For citations:


Tipikin A.A. A comprehensive technique for profiling geophysical characteristics along the radio waves propagation path in the very low frequency band. The Herald of the Siberian State University of Telecommunications and Information Science. 2025;19(3):61-75. (In Russ.) https://doi.org/10.55648/1998-6920-2025-19-3-61-75

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6920 (Print)