Preview

The Herald of the Siberian State University of Telecommunications and Information Science

Advanced search

On Applicability Limits Of Empirical Relationsips For A Queue With Fractal Shot Input

https://doi.org/10.55648/1998-6920-2025-19-3-111-121

Abstract

Conclusions are formulated about the applicability limits of previously obtained empirical relationships that allow analytical calculation of the average queue length estimate in a queuing system with an incoming flow in the form of a fractal shot process (FSNDP). Brief overviews of network traffic modeling in client-server systems based on the FSNDP process, the structure of the process itself, and the approach used to obtain the analytical relationships are also given.

About the Authors

Dmitry Evgenievich Sokolov
Rostelecom Information Technologies LLC (RTK IT LLC)
Russian Federation
Head of the Department for the Implementation of Settlement Systems


Nikolai Gennadievich Trenogin
Siberian State University of Telecommunications and Informatics (SibSUTI); Rostelecom Information Technologies LLC (RTK IT LLC)
Russian Federation
PhD, Associate Professor of the Department of Telecommunication Networks and Computing Facilities at SibSUTI, Director of the Department of Development of Information Systems and Platforms at Rostelecom Information Technologies LLC (RTK IT LLC)


References

1.

2. Shelukhin O. I., Teniakshev A. M., Osin A. V. Fraktal'nye protsessy v telekommunikatsiiakh : monografiia [Fractal processes in telecommunications : monograph]. Moscow, Radiotekhnika, 2003. 480 p.

3. Tsybakov B. S. Model' teletrafika na osnove samopodobnogo sluchainogo protsessa [Teletraffic model based on a self-similar stochastic process]. Radiotekhnika, 1999, no. 5, pp. 24–31.

4. Neiman V. I. Novoe napravlenie v teorii teletrafika [A Novel Approach in Teletraffic Theory]. Elektrosviaz', 1998, no 7, pp. 27–30.

5. Neiman V. I. Samopodobnye protsessy i ikh primenenie v teorii teletrafika [Self-similar processes and theirs application in teletraffic theory] // Trudy Mezhdunarodnoi Akademii sviazi, 1999, no 1, pp. 11–15.

6. Leland W. E., Taqqu M. S., Willinger W., Wilson D. V. On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking, 1994, vol. 2, no 1, pp. 1–15.

7. Norros I. The Management of Large Flows of Connectionless Traffic on the Basis of Self-Similar Modeling. ICC ’95. IEEE International Conference on Communications. Seattle, 1995, pp. 451-455.

8. Shelukhin O. I., Rybakov S. Yu., Vanyushina A. V. Modifikatsiya algoritma obnaruzheniya setevykh atak metodom fiksatsii skachkov fraktalnoy razmernosti v rezhime online. [Modification Of The Network Attack Detection Algorithm By Recording Fractal Dimension Jumps In Online Mode] . Proceedings of Telecom. Universities. 2022. No. 3. PP. 117-126.

9. Zhang, Y., Wang, Y., Cao, H., Hu, Y., Lin, Z., An, K., Li, D. Self-similar traffic prediction for LEO satellite networks based on LSTM. IET Commun. 2025. No 19. PP. 1-9.

10. Shelukhin O., Rybakov S. Statisticheskiye kharakteristiki fraktalnoy razmernosti trafika IoT na primere nabora dannykh Kitsune [IoT Traffic Fractal Dimension Statistical Characteristics on the Kitsune Dataset Example]. Proceedings of Telecommunication Universities, 2023, no 9(5), pp. 112-119.

11. Popoola J., Popoola O., Olaniran O. An Exact Method for a Class of Self-Similar M/Ga/1/K

12. Queueing System of Internet Stream. FUOYE Journal of Engineering and Technology. 2022 - vol. 7, issue 1., pp. 11-16.

13. Ryzhikov Yu. I., Ulanov A. V. Chislenniy Metod rascheta mnogokanalnykh sistem massovogo obsluzhivaniya s potokom Pareto [Numerical Method For Calculating Multichannel Queuing Systems With Pareto Flow]. Sistemy upravleniya, svyazi i bezopasnosti. 2021. No 2. PP. 1-11.

14. Norros I. On the use of fractional Brownian motion in the theory of connectionless networks. IEEE Journal on Selected Areas in Communications, 1995, vol. 13, no 6, pp. 953–962.

15. Chen J., Bhatia H. S., Addie R. G., Zukerman M. Statistical characteristics of queue with fractional Brownian motion input. Electronics Letters, 2015, vol. 51, no 9, pp. 699–701.

16. Petrov M. N., Ponomarev D. Iu. Samopodobie v sistemakh massovogo obsluzhivaniia s ogranichennym buferom [Self-similarity in Queuing Systems With Limited Buffer]. Elektrosviaz', 2002, no 2, pp. 35–39.

17. Trenogin N. G., Petrov M. N., Sokolov D. E. Empirical Relationship for Queue Length Estimation in a System With Fractal Shot Input // Siberian Journal of Science and Technology, 2017, Vol. 18, no 2, pp. 294–299.

18. Ryu B., Lowen S. Modeling, analysis and simulation of self-similar traffic using the fractal-shot-noise-driven Poisson process. Proc. IASTED Modeling and Simulation. Pittsburgh, PA, 1995, pp. 1-4.

19. Ryu B. K. Fractal Network Traffic: From Understanding to Implications : Ph.D. thesis. Columbia University, 1996, 143 p.

20. Trenogin N. G., Sokolov D. E. Modelirovanie setevogo trafika v informatsionnykh sistemakh na osnove fraktal'nogo tochechnogo protsessa [Modeling Of Network Traffic In Information Systems Basing On Fractal Point Process]. Vestnik universitetskogo kompleksa : sb. nauch. tr. pod obshch. red. prof. N. V. Vasilenko, Krasnoiarsk, VSF RGUITP, NII SUVPT, 2004, – vol. 2(16), pp. 12–21.

21. Trenogin N. G., Sokolov D. E. Fraktal'nye svoistva setevogo trafika v klient-servernoi informatsionnoi sisteme [Fractal Properties Of Network Traffic In Client-Server Information System]. Vestnik NII SUVPT : sb. nauch. tr. Krasnoiarsk, 2003, vol. 14, pp. 163–172.

22. Trenogin N. G., Petrov M. N., Sokolov D. E. Svoistva fraktal'nogo trafika pri prokhozhdenii sistemy massovogo obsluzhivaniia s ochered'iu. [Properties Of Fractal Traffic Passing A Queuing System]. Vestnik SibGAU, 2017, vol. 18, no 1, pp. 105–110.

23. Petrov M. N., Trenogin N. G., Velovatyi E. A. Sistema podderzhki operatsionnoi i biznes-deiatel'nosti predpriiatiia sviazi s ispol'zovaniem tenzornoi metodologii analiza sistem [Operation And Buisness Support System Of Telecommunication Operator Using Tensor System Analysis Methodology]. Elektrosviaz', 2013, no 1, pp. 17–20.

24.

25.


Review

For citations:


Sokolov D.E., Trenogin N.G. On Applicability Limits Of Empirical Relationsips For A Queue With Fractal Shot Input. The Herald of the Siberian State University of Telecommunications and Information Science. 2025;19(3):111-121. (In Russ.) https://doi.org/10.55648/1998-6920-2025-19-3-111-121

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6920 (Print)