Preview

The Herald of the Siberian State University of Telecommunications and Information Science

Advanced search

Mathematical modeling of the competition of two ideologies with internal conflicts

https://doi.org/10.55648/1998-6920-2022-16-4-27-42

Abstract

When studying social processes, it is of great interest to predict the behavior of society or its individual components. At present, methods of mathematical modeling and corresponding mathematical models are being actively developed for this purpose. The purpose of the work is to build a mathematical model of the competitive struggle of two ideologies taking into account the spontaneous and forced transitions of individuals between ideologies, to analyze the resulting model to determine the scenarios for the development of ideologies, иand also to find the conditions under which this or that scenario is realized. Methods. In this paper, parametric studies of the development of ideologies over time are carried out for various values of the model parameters. To determine the conditions for the existence of different scenarios for the development of ideologies the stability of the model is studied. Results. A model of the competitive struggle of two ideologies is proposed  taking into account spontaneous and forced transitions of individuals between ideologies. In the considered model all ideologies eventually come to stable stationary states. It is shown that the development of ideologies can occur only according to three scenarios: (A) both ideologies survive and coexist; (B) both ideologies die out, and (C) one of the ideologies survives while the other dies out. The conditions for the existence of each of the scenarios for the development of ideologies are determined. Conclusion. Despite the fact that the real system under consideration is discrete with a large number of elements (adherents of ideologies) a transition to a continuous model is possible. The equations obtained in the considered model are the modified LotkaVolterra equations. The analysis of the model made it possible to derive criteria for the existence of various scenarios for the behavior of ideologies, to determine the boundaries by the parameters of the model that separate the scenarios for the development of ideologies. Unlike similar works this work takes into account spontaneous and forced transitions between ideologies including those due to internal conflicts. The constructed model can be used to analyze electoral processes, predict the emergence and development of terrorist groups, various religious communities, etc.

About the Author

E. S. Antipova
State University of Management
Russian Federation

 Ekaterina S. Antipova, Senior Lecturer, Department of Mathematical Methods in Economics and Management

109542, Moscow, Ryazansky prospekt, 99



References

1. Shchepan'skij Ya. Elementarnye ponyatiya sociologii. Pod obshchej red. i posl. ak. A.M. Rumyanceva, per. s pol'skogo M.M. Gurenko [Elementary concepts of sociology]. ed. and post. ak. A.M. Rumyantsev, translated from Polish by M.M. Gurenko, Moscow, Progress Publ., 1969, 237 p.

2. Park R. E., and Burgess E. W. Introduction to the Science of Sociology. Good Press, 2019. 1152 p.

3. Hamilton M.B. The elements of the concept of ideology. Political studies, 1987, vol. 35, no. 1, pp. 18-38.

4. Matcz U. Ideologii kak determinanta politiki v e`poxu moderna [Ideologies as a determinant of politics in the era of modernity]. Polis. Politicheskie issledovaniya, 1992, no. 1-2, pp. 130-142.

5. Musixin G.I. Ideologiya i kul`tura [Ideology and culture] Polis. Politicheskie issledovaniya, 2012, no 1, pp. 53-62.

6. Trubeckov D.I. Fenomen matematicheskoj modeli Lotki-Vol'terry i skhodnyh s nej [The phenomenon of the Lotka-Volterra mathematical model and similar ones]. Izvestiya vuzov «Prikladnaya nelinejnaya dinamika», 2011, vol. 19, no. 2, pp. 69-88.

7. Goodwin R.M. A Growth Model. Socialism and Growth. Cambridge: University Press, 1967.

8. Cibulin V.G., Hosaeva Z.H. Mathematical model of differentiation of society with social tension [Mathematical model of differentiation of society with social tension]. Komp'yuternye issledovaniya i modelirovanie, 2019, vol. 11, no 5, pp. 999-1012.

9. Zhuravka A.V. Modelirovanie konkurentno-kooperacionnyh vzaimodejstvij [Modeling of competitive and cooperative interactions]. Social'no-ekonomicheskie sistemy. Biznes inform, 2002, no. 1-2, pp. 49-51.

10. Santonja F.J., Tarazona A.C., and Villanueva R.J. A mathematical model of the pressure of an extreme тideology on a society. Computers and Mathematics with Applications, 2008. vol. 56, no. 3, pp. 836–846.

11. Wang Y., and Bu F. Modeling radicalization of terrorism under the influence of multiple ideologies. AIMS Mathematics, 2021. vol. 7, no. 3. pp. 4833-4850. DOI: 10.3934/math.2022269.

12. De la Poza E., Jódar L., and Pricop A. Mathematical Modeling of the Propagation of Democratic Support of Extreme Ideologies in Spain: Causes, Effects, and Recommendations for Its Stop. Abstract and Applied Analysis, Hindawi. 2013. vol. 2013, 729814.

13. Abrica-Jacinto N.L., Kurmyshev E., and Juárez H.A. Effects of the interaction between ideological affinity and psychological reaction of agents on the opinion dynamics in a relative agreement model. Journal of Artificial Societies and Social Simulation. 2017. vol. 20, no. 3. DOI: 10.18564/jasss.3377.

14. Chernavskij D.S. Sinergetika i informatika. Dinamicheskaya teoriya informacii [Synergetics and informatics. Dynamic Information Theory] Izvestiya vysshih uchebnyh zavedenij. Prikladnaya nelinejnaya dinamika, 2003, vol. 11, no. 6, pp. 156-159.

15. Polishchuk R.F., Chernavskij D.S., Starkov N.I. Bor'ba valyut i sinergetika. Rossiya v global'nom mire: vyzovy i perspektivy razvitiya: sinergeticheskij aspekt: sbornik nauchnyh trudov. [The struggle of currencies and synergy. Russia in the Global World: Challenges and Prospects for Development: Synergetic Aspect: Collection of Scientific Papers]. 2011, pp. 102-109.

16. Malkov S.Yu., Korotaev A.V. O modelirovanii i prognozirovanii regional'nyh i glo-bal'nyh social'nopoliticheskih krizisov [On modeling and forecasting regional and global socio-political crises] Sistemnyj monitoring global'nyh i regional'nyh riskov, 2019, pp. 155-173.

17. Bukharin S.N., Malkov S.YU. K voprosu o matematicheskom modelirovanii informatsionnykh vzaimodeystviy [On the issue of mathematical modeling of information interactions.] Informacionnye vojny, 2010, vol. 2, no. 14, 14 p.

18. Malkov S.YU., Bilyuga S.E. Model' ustoychivosti/destabilizatsii politicheskikh system [Model of stability/destabilization of political systems] Informacionnye vojny, 2015, vol. 1, no 33, 7 p.

19. Malkov S.YU., Kovalev V.I., Kosse YU.V. Modelirovaniye eskalatsii/deeskalatsii mezhgosu-darstvennykh konfliktov [Modeling the escalation/de-escalation of interstate conflicts] Strategicheskaya stabil'nost', 2017, no. 3. pp. 53-63.

20. Chernavskiy D.S., Chernavskaya N.M., Malkov S.YU., Malkov A.S. Matematicheskoye modeli-rovaniye geopoliticheskikh protsessov [Mathematical modeling of geopolitical processes] Strategicheskaya stabil'nost', 2002, vol. 1, pp. 60-66.

21. Zakutnyaya L.A., Antipova E.S. Model' konkurentnoy bor'by dvukh ideologiy [A model of competition between two ideologies] Trudy XXIII Vserosijskoj studencheskoj nauchno-prakticheskoj konferencii nizhnevartovskogo gosudarstvennogo universiteta, 2021, pp. 135-142.

22. Riznichenko G.YU. Lektsii po matematicheskim modelyam v biologii [Lectures on mathematical models in biology] 2002.

23. Remien C.H., Eckwright M.J., and Ridenhour B.J. Structural identifiability of the generalized Lotka–Volterra model for microbiome studies. Royal Society Open Science, 2021 , vol. 8, no. 7, 201378, 2021.

24. Farhan A.G. Lotka–Volterra Model with Prey-Predators Food Chain. Iraqi Journal of Science, Special Issue, 2020, pp. 56-63.

25. Rabinovich M. I., Myuyezinolu M. K. Nelineynaya dinamika mozga: emotsii i intellektual'naya deyatel'nost' [Nonlinear brain dynamics: emotions and intellectual activity] Uspekhi fizicheskih nauk, 2010, vol. 180, no. 4, pp. 371-387.

26. AlAdwani M., and Saavedra S. Is the addition of higher-order interactions in ecological models increasing the understanding of ecological dynamics?. Mathematical Biosciences, 2019, vol. 315, 108222.

27. Zhang G., McAdams D.A., Shankar V., and Mohammadi Darani M. Technology evolution prediction using Lotka–Volterra equations. Journal of Mechanical Design, 2018, vol. 140, no. 6, 061101.

28. Akayev A.A., Malkov S.YU. Geopoliticheskaya dinamika: vozmozhnosti logiko-matematicheskogo modelirovaniya. [Geopolitical Dynamics: Possibilities of Logic and Mathematical Modeling] Geopolitika i bezopasnost', 2009, vol. 4, no. 8, pp. 39-55.

29. Chernavskiy D.S., Shcherbakov A.V., Zul'pukarov M.G.M. Model' konkurentsii. [Competition model] Preprinty Instituta prikladnoj matematiki im. M.V. Keldysha, 2006, no. 0, pp. 64-20.

30. Riznichenko G. YU. Bazovyye modeli Dmitriya Sergeyevicha Chernavskogo [Basic models of Dmitry Sergeevich Chernavsky] Komp'yuternye issledovaniya i modelirovanie, 2017, vol. 9, no. 3. pp. 389-395.

31. Fel'dman V.R. Ideologiya v sotsial'no-istoricheskoy dinamike [Ideology in socio-historical dynamics] Vestnik Tomskogo gosudarstvennogo universiteta. Filosofiya. Sociologiya. Politologiya, 2012, vol. 4, no. 20 (1), pp. 107-113.


Review

For citations:


Antipova E.S. Mathematical modeling of the competition of two ideologies with internal conflicts. The Herald of the Siberian State University of Telecommunications and Information Science. 2022;16(4):27-42. (In Russ.) https://doi.org/10.55648/1998-6920-2022-16-4-27-42

Views: 525


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6920 (Print)